Repositorio Institucional

Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California

Mostrar el registro sencillo del ítem

dc.creator M. P. Burke spa
dc.creator T. S. Hogue spa
dc.creator A. M. Kinoshita spa
dc.creator J. Barco spa
dc.creator C. Wessel spa
dc.creator E. D. Stein spa
dc.date 2013 spa
dc.date.accessioned 2017-06-15T22:05:24Z
dc.date.available 2017-06-15T22:05:24Z
dc.identifier.citation Burke, M.P., Hogue, T.S., Kinoshita, A.M. et al. Environ Monit Assess (2013).Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185, (12), 10131-10145 spa
dc.identifier.issn 01676369 spa
dc.identifier.uri http://hdl.handle.net/11407/3478
dc.description Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire’s impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire. spa
dc.language.iso eng spa
dc.publisher Springer International Publishing spa
dc.relation.ispartof Environmental Monitoring and Assessment, December 2013, Volume 185, Issue 12, pp 10131–10145 spa
dc.relation.isversionof https://link.springer.com/article/10.1007/s10661-013-3318-9 spa
dc.rights info:eu-repo/semantics/restrictedAccess spa
dc.source Environmental Monitoring and Assessment spa
dc.subject Wildfire spa
dc.subject Urban fringe spa
dc.subject Stormwater spa
dc.subject Los Angeles spa
dc.subject Metals spa
dc.title Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California spa
dc.type info:eu-repo/semantics/article spa
dc.type Article spa
dc.rights.accessRights restrictedAccess spa
dc.publisher.program Ingeniería Civil spa
dc.identifier.doi DOI: 10.1007/s10661-013-3318-9 spa
dc.publisher.faculty Facultad de ingenierías spa
dc.identifier.e-issn 15732959 spa
dc.affiliation M. P. Burke; Department of Civil and Environmental Engineering, UCLA Los Angeles USA; RESPEC Consulting and Services Rapid City USA spa
dc.affiliation T. S. Hogue; Department of Civil and Environmental Engineering, UCLA Los Angeles USA; Civil and Environmental Engineering Colorado School of Mines Golden USA spa
dc.affiliation A. M. Kinoshita; Department of Civil and Environmental Engineering, UCLA Los Angeles USA; Civil and Environmental Engineering Colorado School of Mines Golden USA spa
dc.affiliation J. Barco; Department of Civil and Environmental Engineering, UCLA Los Angeles USA; Universidad de Medellín; spa
dc.affiliation C. Wessel; Department of Civil and Environmental Engineering, UCLA Los Angeles USA; Geosyntec Consultants Los Angeles USA spa
dc.affiliation E. D. Stein; Southern California Coastal Water Research Project Costa Mesa USA spa
dc.source.bibliographicCitation Environmental Monitoring and Assessment, December 2013, Volume 185, Issue 12, pp 10131–10145 info:eu-repo/semantics/restrictedAccess spa
dc.source.bibliographicCitation Burke, M.P., Hogue, T.S., Kinoshita, A.M. et al. Environ Monit Assess (2013).Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185, (12), 10131-10145 spa
dc.source.bibliographicCitation Barco, J., Hogue, T. S., Curto, V., & Rademacher, L. (2008). Linking hydrology and stream geochemistry in urban fringe watersheds. Journal of Hydrology, 360, 31–47. spa
dc.source.bibliographicCitation Bitner, K., Gallaher, B., & Mullen, K. (2001). Review of wildfire effects on chemical water quality. Los Alamos National Laboratory, LA-13826. spa
dc.source.bibliographicCitation Blake, W. H., Walsh, M. J., Barnsley, G. P., Dyrynda, P., & James, J. G. (2003). Heavy metal concentrations during storm events in a rehabilitated industrialized catchment. Hydrological Processes, 17, 1923–1939. spa
dc.source.bibliographicCitation Bonnin, G. M., Martin, D., Lin, B., Parzybok, T., Yekta, M., Riley, D. (2006). Precipitation-frequency atlas of the United States. NOAA atlas 14, vol. 1, version 4. NOAA, NWS, Silver Spring, MD. spa
dc.source.bibliographicCitation Burke, M. P., Ferreira, M., Mendez, C. B., Navarro, B. I., Lopez, S., Jay, J. A., et al. (2010). The effect of wildfire on soil mercury concentrations in Southern California watersheds. Water Air Soil Pollution, 212, 369–385. spa
dc.source.bibliographicCitation Caldwell, C. A., Canavan, C. M., & Bloom, N. S. (2000). Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir. Science of the Total Environment, 260, 125–133. spa
dc.source.bibliographicCitation CalFrap (California Department of Forestry and Fire Protection). (2009). Fire perimeters (fire09_1). Retrieved from http://frap.cdf.ca.gov/data/frapgisdata/select.asp. spa
dc.source.bibliographicCitation DeBano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: A review. Journal of Hydrology, 231–232, 195–206. spa
dc.source.bibliographicCitation DeBano, L. F., Rice, R. M., & Conrad, C. E. (1979). Soil heating in chaparral fires: Effects on soil properties, plant nutrients, erosion, and runoff. USDA Forest Service, PSW-145. spa
dc.source.bibliographicCitation Division of Mines and Geology, Department of Conservation of California. (1998). Seismic hazard zone report for the Pasadena 7.5-minute Quadrangle, Los Angeles County, California. spa
dc.source.bibliographicCitation Desilets, S. L. E., Nijssen, B., Ekwurzel, B., Ferr´e, T. P. A. (2007). Post-wildfire changes in suspended sediment rating curves: Sabino Canyon, Arizona. Hydrological Processes, 21, 1413–1348. spa
dc.source.bibliographicCitation Fenn, M. E., & Bytnerowicz, A. (1997). Summer throughfall and winter deposition in the San Bernardino Mountains in Southern California. Atmospheric Environment, 31(5), 673–683. spa
dc.source.bibliographicCitation Fenn, M. E., & Poth, M. A. (1999). Temporal and spatial trends in stream water nitrate concentrations in the San Bernardino Mountains. S California Journal Environmental Quality, 28(3), 822–836. spa
dc.source.bibliographicCitation Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., et al. (2003). Ecological effects of nitrogen deposition in the Western United States. Bioscience, 53(4), 404–420. spa
dc.source.bibliographicCitation Gallaher, B., Koch, R., & Mullen, K. (2002). Quality of storm water runoff at Los Alamos National Laboratory in 2000 with emphasis on the impact of the Cerro Grande Fire. Los Alamos National Laboratory, LA-13926. spa
dc.source.bibliographicCitation Galster, J. C., Pazzaglia, F. J., Hargreaves, B. R., Morris, D. P., Peters, S. C., & Weisman, R. N. (2006). Effects of urbanization on watershed hydrology: The scaling of discharge with drainage area. Geology, 34(9), 713–716. spa
dc.source.bibliographicCitation Hogue, T. S., Sorooshian, S., & Gupta, H. (2000). A multistep automatic calibration scheme for river forecasting models. Journal of Hydrometeorology, 1, 524–542. spa
dc.source.bibliographicCitation Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., et al. (2007). Completion of the 2001 National Land Cover Database for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 73(4), 337–341. spa
dc.source.bibliographicCitation Joshia, U. M., & Balasubramanian, R. (2010). Characteristics and environmental mobility of trace elements in urban runoff. Chemosphere, 80(3), 310–318. spa
dc.source.bibliographicCitation Jung, H. Y., Hogue, T. S., Rademacher, L. K., & Meixner, T. (2009). Impact of wildfire on source water contributions in Devil Creek, CA: Evidence from end-member mixing analysis. Hydrological Processes, 23(2), 183–200. spa
dc.source.bibliographicCitation Kelly, E. N., Schindler, D. W., St. Louis, V. L., Donald, D. B., & Vladicka, K. E. (2006). Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. PNAS, 103(51), 19380–19385. spa
dc.source.bibliographicCitation Kinoshita, A. M., & Hogue, T. S. (2011). Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena, 87, 240–252. spa
dc.source.bibliographicCitation Leak, M., Passuello, R., & Tyler, B. (2003). I’ve seen fire. I’ve seen rain. I’ve seen muddy waters that I thought would never clear again. Waterworks, 6, 38–44. spa
dc.source.bibliographicCitation Letey, J. (2001). Causes and consequences of fire-induced soil water repellency. Hydrological Processes, 15, 2867–2875. spa
dc.source.bibliographicCitation Loring, D. H. (1991). Normalization of heavy-metal data from estuarine and coastal sediments. Science, 48, 101–115. spa
dc.source.bibliographicCitation Los Angeles County Department of Public Works (LADPW), Water Resources Division. (2010). Near real-time precipitation map. Retrieved from http://dpw.lacounty.gov/wrd/Precip/.Los Angeles County Department of Public Works (LADPW), Water Resources Division. (2011). Devil’s Gate Dam and Reservoir post-fire sediment removal short term solution report for sediment accumulation along the face of the dam. WR5-A3570. spa
dc.source.bibliographicCitation Lu, R., Turco, R. P., Stolzenbach, K. D., Freidlander, S. K., Xiong, C., Schiff, K., et al. (2003). Dry deposition of airborne trace metals on the Los Angeles Basin and adjacent coastal waters. Journal of Geophysical Research, 108, 4074–4089. spa
dc.source.bibliographicCitation Malmon, D. V., Reneau, S. L., Katzman, D., Lavine, A., & Lyman, J. (2007). Suspended sediment transport in an ephemeral stream following wildfire. Journal of Geophysical Research, 112, F02006. doi:10.1029/2005JF000459. spa
dc.source.bibliographicCitation Meixner T., Fenn, M. E., Poth, M. A. (2001). Nitrate in polluted mountainous catchments with Mediterranean climates. ScientificWorldJournal, 1, 564–571. Doi: 10.1100=tsw.2001.324. spa
dc.source.bibliographicCitation Meixner, T., Fenn, M., Wohlgemuth, P., Oxford, M., & Riggan, P. (2006). N saturation symptoms in chaparral catchment are not reversed by prescribed fire. Environmental Science and Technology, 40, 2887–2894. spa
dc.source.bibliographicCitation Moody, J. A., & Martin, D. A. (2009). Synthesis of sediment yields after wildland fire in different rainfall regimes in the Western United States. International Journal of Wildland Fire, 18, 96–115. spa
dc.source.bibliographicCitation Moody, J. A., Martin, D. A., Haire, S. L., & Kinner, D. A. (2008). Linking runoff response to burn severity after a wildfire. Hydrological Processes, 22, 2063–2074. spa
dc.source.bibliographicCitation Neary, D. G., Ryan, K. C., DeBano, L. F. (2005). Wildland fire in ecosystems: Effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden, UT: USDA Forest Service, Rocky Mountain Research Station. 250 p. spa
dc.source.bibliographicCitation Pierson, F. B., Robichaud, P. R., & Spaeth, K. E. (2001). Spatial and temporal effects of wildfire on the hydrology of a steep rangeland watershed. Hydrological Processes, 15, 2905–2916. spa
dc.source.bibliographicCitation Ranali, A.J. (2004). A summary of the scientific literature on the effects of fire on the concentration of nutrients in surface waters. Open-File Report 2004-1296, US Department of the Interior, USGS, Denver, CO. spa
dc.source.bibliographicCitation Riggan, P. J., Lockwood, R. N., & Lopez, E. N. (1985). Deposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of Southern California. Environmental Science and Technology, 19(9), 781–789. spa
dc.source.bibliographicCitation Robichaud, P. R. (2000). Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests. USA Journal of Hydrology, 231–232, 220–229. spa
dc.source.bibliographicCitation Rothenburg, S. E., Kirby, M. E., DeRose, M. B., Lin, C. C., Feng, X., Ambrose, R. F., et al. (2010). The impact of over 100 years of wildfires on mercury levels and accumulation rates in two lakes in southern California, USA. Environment Earth Science, 60(5), 993–1005. spa
dc.source.bibliographicCitation Rulli, M. C., & Rosso, R. (2007). Hydrologic response of upland catchments to wildfires. Advances in Water Resources, 30, 2072–2086. spa
dc.source.bibliographicCitation Schiff, K. C., & Tiefenthaler, L. L. (2011). Seasonal flushing of pollutant concentrations and loads in urban stormwater. Journal of American Water Resources Association, 47(1), 136–142. spa
dc.source.bibliographicCitation Scott, E., & Meixner, T. (2004). Long-term streamflow impact of wildfires in Mediterranean shrubland ecosystems. EOS Transactions AGU, 85(47). spa
dc.source.bibliographicCitation Smith, H., Sheridan, G., Lane, P., Nyman, P., & Haydon, S. (2011). Post-fire water quality in forest catchments: A review with implications for potable water supply. Journal of Hydrology, 396, 170–192. spa
dc.source.bibliographicCitation State Water Resources Control Board (SWRCB). (2010). 2010 integrated report (Clean Water Act Section 303(d) List/305(b) Report). Sacramento, CA: SWRCB. Retrieved from http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml. spa
dc.source.bibliographicCitation Stein, E. D., Brown, J. S., Hogue, T. S., Burke, M. P., & Kinoshita, A. (2012). Stormwater contaminant loading following Southern California wildfires. Environmental Toxicology and Chemistry, 31(11), 2625–2638. spa
dc.source.bibliographicCitation Thomson, N. R., McBean, E. A., Snodgrass, W., & Monstrenko, I. B. (1997). Highway stormwater runoff quality: Development of surrogate parameter relationships. Water Air Soil Pollution, 94, 307–347. spa
dc.source.bibliographicCitation Tiefenthaler, L. L., Stein, E. D., & Schiff, K. C. (2008). Watershed and land use-based sources of trace metals in urban stormwater. Environmental Toxicology and Chemistry, 27(2), 277–287. spa
dc.source.bibliographicCitation US EPA. (1996). The metals translator: Guidance for calculating a total recoverable permit limit from a dissolved criterion. EPA 823-8-96-007. Washington, DC: US EPA. spa
dc.source.bibliographicCitation US EPA. (2000). 40 CFR part 131. Water quality standards; establishment of numeric criteria for priority toxic pollutants for the State of California. Washington, DC: US EPA. spa
dc.source.bibliographicCitation US EPA Clean Water Act. (2002). Federal Water Pollution Control Act [As Amended Through P.L. 107–303, November 27, 2002] 304(a), criteria for priority toxic pollutants. Washington, DC: US EPA. spa
dc.source.bibliographicCitation USDA Forest Service. (2009). Soils resource assessment, Station Fire, Unpublished report CA-ANF-3622. spa
dc.source.bibliographicCitation USGS. (2011). USGS real-time water data for the nation: USGS 11098000 Arroyo Seco nr Pasadena CA. Retrieved from http://nwis.waterdata.usgs.gov/nwis/uv/?-site_no=11098000&agency_cd=USGS. spa
dc.source.bibliographicCitation Wessel, C. (2009). Contaminant flushing from an urban fringe watershed: Insight into hydrologic and soil dynamics during the wet season. M.S. thesis, University of California, Los Angeles. spa
dc.source.bibliographicCitation Yoon, V. K., & Stein, E. D. (2008). Natural catchments as sources of background levels of storm water metals, nutrients, and solids. Journal of Environmental Engineering, 134, 961–973. spa
dc.source.bibliographicCitation Žák, K., Rohovec, J., & Navrátil, T. (2009). Fluxes of heavy metals from a highly polluted watershed during flood events: A case study of the Litavka River, Czech Republic. Water Air Soil Pollution, 203(1–4), 343–358. spa


Archivos en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta