Mostrar el registro sencillo del ítem

Hacia el modelado 3d de tumores cerebrales mediante endoneurosonografía y redes neuronales

dc.contributor.authorSerna, Andrés
dc.contributor.authorPrieto, Flavio
dc.date.accessioned2017-06-29T22:22:41Z
dc.date.available2017-06-29T22:22:41Z
dc.date.created2017-06-30
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/3610
dc.description.abstractLas cirugías mínimamente invasivas se han vuelto populares debido a que implican menos riesgos con respecto a las intervenciones tradicionales. En neurocirugía, las tendencias recientes sugieren el uso conjunto de la endoscopia y el ultrasonido, técnica llamada endoneurosonografía (ENS), para la virtualización 3D de las estructuras del cerebro en tiempo real. La información ENS se puede utilizar para generar modelos 3D de los tumores del cerebro durante la cirugía. En este trabajo, presentamos una metodología para el modelado 3D de tumores cerebrales con ENS y redes neuronales. Específicamente, se estudió el uso de mapas auto-organizados (SOM) y de redes neuronales tipo gas (NGN). En comparación con otras técnicas, el modelado 3D usando redes neuronales ofrece ventajas debido a que la morfología del tumor se codifica directamente sobre los pesos sinápticos de la red, no requiere ningún conocimiento a priori y la representación puede ser desarrollada en dos etapas: entrenamiento fuera de línea y adaptación en línea. Se realizan pruebas experimentales con maniquíes médicos de tumores cerebrales. Al final del documento, se presentan los resultados del modelado 3D a partir de una base de datos ENS.spa
dc.description.abstractMinimally invasive surgeries have become popular because they reduce the typical risks of traditional interventions. In neurosurgery, recent trends suggest the combined use of endoscopy and ultrasound (endoneurosonography or ENS) for 3D virtualization of brain structures in real time. The ENS information can be used to generate 3D models of brain tumors during a surgery. This paper introduces a methodology for 3D modeling of brain tumors using ENS and unsupervised neural networks. The use of self-organizing maps (SOM) and neural gas networks (NGN) is particularly studied. Compared to other techniques, 3D modeling using neural networks offers advantages, since tumor morphology is directly encoded in synaptic weights of the network, no a priori knowledge is required, and the representation can be developed in two stages: off-line training and on-line adaptation. Experimental tests were performed using virtualized phantom brain tumors. At the end of the paper, the results of 3D modeling from an ENS database are presented.spa
dc.format.extentp. 129-148spa
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.relation.urihttp://revistas.udem.edu.co/index.php/ingenierias/article/view/1787
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 16, núm. 30 (2017); 129-148spa
dc.source2248-4094spa
dc.source1692-3324spa
dc.subjectBrain tumorsspa
dc.subjectEndoneurosonographyspa
dc.subject3D acquisitionspa
dc.subject3D modelingspa
dc.subjectIngeniería mecatrónicaspa
dc.subjectTumores cerebralesspa
dc.subjectEndoneurosonografíaspa
dc.subjectAdquisición 3Dspa
dc.subjectModelado 3Dspa
dc.titleTowards a 3D modeling of brain tumors by using endoneurosonography and neural networksspa
dc.titleHacia el modelado 3d de tumores cerebrales mediante endoneurosonografía y redes neuronalesspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.doi http://dx.doi.org/10.22395/rium.v16n30a7
dc.relation.citationvolume16
dc.relation.citationissue30
dc.relation.citationstartpage129
dc.relation.citationendpage148
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degreesspa
dc.publisher.placeMedellínspa
dc.creator.affiliationSerna, Andrés; Universidad Nacional de Colombia sede Manizalesspa
dc.creator.affiliationPrieto, Flavio; Universidad Nacional de Colombiaspa
dc.relation.referencesA. Di-leva, “Microtechnologies in neurosurgery,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, n.° 6, pp. 797–800, 2010.spa
dc.relation.referencesP. Ferroli et al., “Advanced 3-dimensional planning in neurosurgery,” Neurosurgery, vol. 72, n.° 1, pp. A54-A62, 2013.spa
dc.relation.referencesG.H. Barnett and N. Nathoo, “The modern brain tumor operating room: From standard essentials to current state-of-the-art,” Journal of Neuro-Oncology, vol. 69, n.° 1, pp. 25-33, 2004.spa
dc.relation.referencesA.T. Stadie and R.A. Kockro, “Mono-stereo-autostereo: The evolution of 3-dimensional neurosurgical planning,” Neurosurgery, vol. 72, n.° 1, pp. A63-A77, 2013.spa
dc.relation.referencesK. Resch and J. Schroeder, “Endoneurosonography: technique and equipment, anatomy and imaging, and clinical application,” Neurosurgery, vol. 61, n.° 3, pp. 146-160, 2007.spa
dc.relation.referencesR. Machucho-Cadena et al., “Rendering of brain tumors using endoneurosonography,” In proceedings of the 19th International Conference on Pattern Recognition (ICPR2008), Tampa, Florida, 2008.spa
dc.relation.referencesA.F. Serna-Morales et al., “Acquisition of three-dimensional information of brain structures using endoneurosonography,” Expert systems with applications, vol. 39, n.° 2, pp. 1656-1670, 2012.spa
dc.relation.referencesR.P. Naftel et al., “Small-ventricle neuroendoscopy for pediatric brain tumor management: Clinical article,” Journal of Neurosurgery: Pediatrics, vol. 7, n.° 1, pp. 104-110, 2011.spa
dc.relation.referencesS. Constantini et al., “Safety and diagnostic accuracy of neuroendoscopic biopsies: An international multicenter study,” Journal of Neurosurgery: Pediatrics, vol. 1, n.° 6, pp. 704-709, 2013.spa
dc.relation.referencesM. Ivanov et al., “Intraoperative ultrasound in neurosurgery a practical guide,” British Journal of Neurosurgery, vol. 24, n.° 5, pp. 510-517, 2010.spa
dc.relation.referencesG. Unsgaard et al., “Intra-operative 3D ultrasound in neurosurgery,” Acta Neurochirurgica, vol. 148, n.° 3, pp. 235-253, 2006.spa
dc.relation.referencesJ. Roth et al., “Real-time neuronavigation with high-quality 3D ultrasound sonowand,” Pediatric Neurosurgery, vol. 43, n.° 3, pp. 185-191, 2007.spa
dc.relation.referencesA.F. Serna-Morales et al., “Spatio-temporal image tracking based on optical flow and clustering: An endoneurosonographic application,” In 9th Mexican International Conference on Artificial Intelligence, Pachuca, Mexico, 2010.spa
dc.relation.referencesN.H. Ulrich et al., “Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound,” Child’s Nervous System, vol. 28, n.° 1, pp. 101-109, 2012.spa
dc.relation.referencesA. Burgess et al., “Focused ultrasound: Crossing barriers to treat alzheimer’s disease,” Therapeutic Delivery, vol. 2, n.° 3, pp. 281-286, 2011.spa
dc.relation.referencesK. Resch, Transendoscopic ultrasound for neurosurgery. Berlin-Heidelberg: Springer-Verlag, 2006, 148 p.spa
dc.relation.referencesA.F. Serna-Morales et al., “3D modeling of virtualized reality objects using neural computing,” In proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN2011), San Jose, 2011.spa
dc.relation.referencesF. Montoya-Franco et al., “3D object modeling with graphics hardware acceleration and unsupervised neural networks,” In Advances in Visual Computing: 7th International Symposium (ISVC 2011), Las Vegas, 2011.spa
dc.relation.referencesRichard-Wolf, “Endoscopy”, Richard Wolf Medical Instruments Corporation, [on line], in http://www.richardwolfusa.com/company/about-us.html, 2013.spa
dc.relation.referencesN. Shi et al., “Research on k-means clustering algorithm: An improved k-means clustering algorithm,” In proceedings of the 3rd International Symposium on Intelligent Information Technology and Security Informatics (IITSI2010), Jinggangshan, 2010.spa
dc.relation.referencesT. Hou, et al., “Despeckling medical ultrasound images based on an expectation maximization framework,” Acta Acustica, vol. 36, n.° 1, pp. 73-80, 2011.spa
dc.relation.referencesAloka co. Ultrasound Diagnostic Equipment ALOKA SSD-5000. Mure 6-chome, Mitaka-Shi, Tokyo 181-8622, Japan, mN1-1102 Rev. 9, 2002.spa
dc.relation.referencesS. Marquez et al., “Characterization of ultrasound images of HIFU-induced lesions by extraction of its morphological properties,” In proceedings of the 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE2010), Mexico, 2010.spa
dc.relation.referencesQ. Zhang et al., “Automatic segmentation of calcifications in intra-vascular ultrasound images using snakes and the contourlet transform,” Ultrasound in Medicine and Biology, vol. 36, n.° 1, pp. 111–129, 2010.spa
dc.relation.referencesO. Michailovich and A. Tannenbaum, “Despeckling of medical ultrasound images,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, n.° 1, pp. 64-78, 2006.spa
dc.relation.referencesT.M. Martinetz et al., “‘Neural-gas’ network for vector quantization and its application to time-series prediction,” IEEE Transactions on Neural Networks, vol. 4, n.° 4, pp. 558–569, 1993.spa
dc.relation.referencesM. Piastra, “Self-organizing adaptive map: Autonomous learning of curves and surfaces from point samples,” Neural Networks, vol. 41, pp. 96-112, 2013.spa
dc.relation.referencesT. Kohonen et al., “On the quantization error in SOM vs. VQ: A critical and systematic study”. In Advances in Self-Organizing Maps. Santiago, 2009.spa
dc.relation.referencesM.H. Ghaseminezhad and A. Karami, “A novel self-organizing map (SOM) neural network for discrete groups of data clustering,” Applied Soft Computing, vol. 11, n.° 4, pp. 3771-3778, 2011.spa
dc.relation.referencesM. Letteboer et al., “Brain shift estimation in image–guided neurosurgery using 3D ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 52, n.° 2, pp. 268-276, 2005.spa
dc.relation.referencesI. Chen et al., “Intraoperative brain shift compensation: Accounting for dural septa,” IEEE Transactions on Biomedical Engineering, vol. 58, n.° 3, pp. 499-508, 2011.spa
dc.relation.referencesT. Hartkens et al., “Measurement and analysis of brain deformation during neurosurgery,” IEEE Transactions on Medical Imaging, vol. 22, n.° 1, pp. 82-92, 2003.spa
dc.relation.referencesC. Maurer et al., “Measurement of intra-operative brain surface deformation under a cranioto y,” In Medical Image Computing and Computer-Assisted Interventation (MICCAI98), Cambridge, USA, 1998.spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científicospa
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.relation.ispartofjournalRevista Ingenierías Universidad de Medellínspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International