Repositorio Institucional

ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS

Mostrar el registro sencillo del ítem

dc.creator Vera-Ciro C. spa
dc.creator D'Onghia E. spa
dc.date 2016 spa
dc.date.accessioned 2017-12-19T19:36:52Z
dc.date.available 2017-12-19T19:36:52Z
dc.identifier.issn 0004637X spa
dc.identifier.uri http://hdl.handle.net/11407/4377
dc.description We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved. eng
dc.language.iso Eng spa
dc.publisher Institute of Physics Publishing spa
dc.relation.ispartof Astrophysical Journal spa
dc.relation.ispartof Astrophysical Journal Volume 824, Issue 1, 10 June 2016, Article number 39 spa
dc.relation.isversionof https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976345033&doi=10.3847%2f0004-637X%2f824%2f1%2f39&partnerID=40&md5=453039f708df618675b2062dddad8c89 spa
dc.source Scopus spa
dc.source reponame:Repositorio Institucional spa
dc.source instname:Universidad de Medellín spa
dc.title ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS spa
dc.type Article spa
dc.type info:eu-repo/semantics/publishedVersion spa
dc.type info:eu-repo/semantics/article spa
dc.rights.accessRights restrictedAccess spa
dc.contributor.affiliation Vera-Ciro, C., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia spa
dc.contributor.affiliation D'Onghia, E., Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia spa
dc.identifier.doi 10.3847/0004-637X/824/1/39 spa
dc.subject.keyword galaxies: kinematics and dynamics spa
dc.subject.keyword Galaxy: disk spa
dc.subject.keyword Galaxy: evolution spa
dc.subject.keyword stars: kinematics and dynamics spa
dc.publisher.faculty Facultad de Ciencias Básicas spa
dc.abstract We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved. eng
dc.affiliation Department of Astronomy, University of Wisconsin, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI, 53076, USA, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Cra 87 N30-65, Medellín, Colombia spa
dc.source.bibliographicCitation Arnold, V. I. (1978). Mathematical Methods of Classical Mechanics. spa
dc.source.bibliographicCitation Athanassoula, E., & Martínez-Valpuesta, I. (2008). ASP Conf.Ser.390, Pathways through an Eclectic Universe, 454. spa
dc.source.bibliographicCitation Binney, J., & Spergel, D. (1984). Spectral stellar dynamics - II. the action integrals. MNRAS, 206. spa
dc.source.bibliographicCitation Binney, J., & Tremaine, S. (1987). Galactic Dynamics. spa
dc.source.bibliographicCitation Bird, J. C., Kazantzidis, S., & Weinberg, D. H. (2012). Radial mixing in galactic discs: The effects of disc structure and satellite bombardment. Monthly Notices of the Royal Astronomical Society, 420(2), 913-925. doi:10.1111/j.1365-2966.2011.19728.x spa
dc.source.bibliographicCitation Bovy, J., Hogg, D. W., & Rix, H. -. (2009). Galactic masers and the milky way circular velocity. Astrophysical Journal, 704(2), 1704-1709. doi:10.1088/0004-637X/704/2/1704 spa
dc.source.bibliographicCitation Brunetti, M., Chiappini, C., & Pfenniger, D. (2011). Stellar diffusion in barred spiral galaxies. Astronomy and Astrophysics, 534 doi:10.1051/0004-6361/201117566 spa
dc.source.bibliographicCitation Candy, J., & Rozmus, W. (1991). A symplectic integration algorithm for separable hamiltonian functions. Journal of Computational Physics, 92(1), 230-256. doi:10.1016/0021-9991(91)90299-Z spa
dc.source.bibliographicCitation Carlberg, R. G., & Freedman, W. L. (1985). Dissipative models of spiral galaxies. ApJ, 298. spa
dc.source.bibliographicCitation Daniel, K. J., & Wyse, R. F. G. (2015). Constraints on radial migration in spiral galaxies - I. analytic criterion for capture at corotation. Monthly Notices of the Royal Astronomical Society, 447(4), 3576-3592. doi:10.1093/mnras/stu2683 spa
dc.source.bibliographicCitation D'Onghia, E. (2015). Disk-stability constraints on the number of arms in spiral galaxies. Astrophysical Journal Letters, 808(1) doi:10.1088/2041-8205/808/1/L8 spa
dc.source.bibliographicCitation D'Onghia, E., Vogelsberger, M., & Hernquist, L. (2013). Self-perpetuating spiral arms in disk galaxies. Astrophysical Journal, 766(1) doi:10.1088/0004-637X/766/1/34 spa
dc.source.bibliographicCitation Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050X(80)90013-3 spa
dc.source.bibliographicCitation Eddington, A. S. (1915). The dynamics of a stellar system. third paper: Oblate and other distributions. MNRAS, 76. spa
dc.source.bibliographicCitation Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., & Tomkin, J. (1993). A&A, 275, 101-152. spa
dc.source.bibliographicCitation Goldstein, H. (1980). Classical Mechanics. spa
dc.source.bibliographicCitation Grand, R. J. J., Kawata, D., & Cropper, M. (2015). Impact of radial migration on stellar and gas radial metallicity distribution. Monthly Notices of the Royal Astronomical Society, 447(4), 4018-4027. doi:10.1093/mnras/stv016 spa
dc.source.bibliographicCitation Grand, R. J. J., Kawata, D., & Cropper, M. (2012). The dynamics of stars around spiral arms. Monthly Notices of the Royal Astronomical Society, 421(2), 1529-1538. doi:10.1111/j.1365-2966.2012.20411.x spa
dc.source.bibliographicCitation Halle, A., Di Matteo, P., Haywood, M., & Combes, F. (2015). Quantifying stellar radial migration in an N-body simulation: Blurring, churning, and the outer regions of galaxy discs. Astronomy and Astrophysics, 578 doi:10.1051/0004-6361/201525612 spa
dc.source.bibliographicCitation Hernquist, L. (1990). An analytical model for spherical galaxies and bulges. Astrophysical Journal, 356(2), 359-364. spa
dc.source.bibliographicCitation Hernquist, L. (1993). N-body realizations of compound galaxies. Astrophysical Journal, Supplement Series, 86(2), 389-400. spa
dc.source.bibliographicCitation Jeans, J. H. (1919). Problems of Cosmogony and Stellar Dynamics. spa
dc.source.bibliographicCitation Jenkins, A. (1992). MNRAS, 257. spa
dc.source.bibliographicCitation Jenkins, A., & Binney, J. (1990). MNRAS, 245. spa
dc.source.bibliographicCitation Kazantzids, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. (2008). Cold dark matter substructure and galactic disks. I. morphological signatures of hierarchical satellite accretion.Astrophysical Journal, 688(1), 254-276. doi:10.1086/591958 spa
dc.source.bibliographicCitation Loebman, S. R., Roškar, R., Debattista, V. P., Ivezić, Ž., Quinn, T. R., & Wadsley, J. (2011). The genesis of the milky way's thick disk via stellar migration. Astrophysical Journal, 737(1) doi:10.1088/0004-637X/737/1/8 spa
dc.source.bibliographicCitation Martinez-Valpuesta, I., Shlosman, I., & Heller, C. (2006). Evolution of stellar bars in live axisymmetric halos: Recurrent buckling and secular growth. Astrophysical Journal, 637(1 I), 214-226. doi:10.1086/498338 spa
dc.source.bibliographicCitation Merritt, D., & Sellwood, J. A. (1994). Bending instabilities in stellar systems. Astrophysical Journal, 425(2), 551-567. spa
dc.source.bibliographicCitation Mihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and Kinematics. spa
dc.source.bibliographicCitation Minchev, I., & Famaey, B. (2010). A new mechanism for radial migration in galactic disks: Spiral-bar resonance overlap. Astrophysical Journal, 722(1), 112-121. doi:10.1088/0004-637X/722/1/112 spa
dc.source.bibliographicCitation Minchev, I., Famaey, B., Combes, F., Di Matteo, P., Mouhcine, M., & Wozniak, H. (2011). Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations.Astronomy and Astrophysics, 527(22) doi:10.1051/0004-6361/201015139 spa
dc.source.bibliographicCitation Ollongren, A. (1962). BAN, 16, 241. spa
dc.source.bibliographicCitation Pettitt, A. R., Dobbs, C. L., Acreman, D. M., & Bate, M. R. (2015). The morphology of the milky way - II. reconstructing CO maps from disc galaxies with live stellar distributions. Monthly Notices of the Royal Astronomical Society, 449(4), 3911-3926. doi:10.1093/mnras/stv600 spa
dc.source.bibliographicCitation Pfenniger, D. (1984). The 3D dynamics of barred galaxies. A&A, 134. spa
dc.source.bibliographicCitation Pfenniger, D., & Friedli, D. (1991). A&A, 252, 75. spa
dc.source.bibliographicCitation Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., . . . Bartkiewicz, A. (2014). Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2) doi:10.1088/0004-637X/783/2/130 spa
dc.source.bibliographicCitation Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. (2008). Riding the spiral waves: Implications of stellar migration for the properties of galactic disks. Astrophysical Journal, 684(2 PART 2), L79-L82. doi:10.1086/592231 spa
dc.source.bibliographicCitation Roškar, R., Debattista, V. P., Quinn, T. R., & Wadsley, J. (2012). Radial migration in disc galaxies-I. transient spiral structure and dynamics. Monthly Notices of the Royal Astronomical Society, 426(3), 2089-2106. doi:10.1111/j.1365-2966.2012.21860.x spa
dc.source.bibliographicCitation Schönrich, R., & Binney, J. (2009). Origin and structure of the galactic disc(s). Monthly Notices of the Royal Astronomical Society, 399(3), 1145-1156. doi:10.1111/j.1365-2966.2009.15365.x spa
dc.source.bibliographicCitation Sellwood, J. A., & Binney, J. J. (2002). Radial mixing in galactic discs. Monthly Notices of the Royal Astronomical Society, 336(3), 785-796. doi:10.1046/j.1365-8711.2002.05806.x spa
dc.source.bibliographicCitation Sellwood, J. A., & Carlberg, R. G. (1984). Spiral instabilities provoked by accretion and star formation. ApJ, 282, 61-74. spa
dc.source.bibliographicCitation Serenelli, A. M., Basu, S., Ferguson, J. W., & Asplund, M. (2009). New solar composition: The problem with solar models revisited. Astrophysical Journal, 705(2 PART 2), L123-L127. doi:10.1088/0004-637X/705/2/L123 spa
dc.source.bibliographicCitation Solway, M., Sellwood, J. A., & Schönrich, R. (2012). Radial migration in galactic thick discs. Monthly Notices of the Royal Astronomical Society, 422(2), 1363-1383. doi:10.1111/j.1365-2966.2012.20712.x spa
dc.source.bibliographicCitation Spitzer, L., & Schwarzschild, M. (1953). The possible influence of interstellar clouds on stellar velocities. II. ApJ, 118. spa
dc.source.bibliographicCitation Springel, V., Di Matteo, T., & Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 361(3), 776-794. doi:10.1111/j.1365-2966.2005.09238.x spa
dc.source.bibliographicCitation Toomre, A. (1981). The Structure and Evolution of Normal Galaxies, 111-136. spa
dc.source.bibliographicCitation Vera-Ciro, C., D'Onghia, E., Navarro, J., & Abadi, M. (2014). ApJ, 794(2). spa
dc.source.bibliographicCitation Villalobos, A., & Helmi, A. (2008). Simulations of minor mergers - I. general properties of thick discs. Monthly Notices of the Royal Astronomical Society, 391(4), 1806-1827. doi:10.1111/j.1365-2966.2008.13979.x spa
dc.source.bibliographicCitation Wielen, R., Fuchs, B., & Dettbarn, C. (1996). On the birth-place of the sun and the places of formation of other nearby stars. Astronomy and Astrophysics, 314(2), 438-447. spa
dc.source.bibliographicCitation Yurin, D., & Springel, V. (2015). MNRAS, 452, 2343. spa


Archivos en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta