Repositorio Institucional

Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide

Mostrar el registro sencillo del ítem

dc.creator Acelas N.Y. spa
dc.creator Flórez E. spa
dc.date 2017 spa
dc.date.accessioned 2017-12-19T19:36:52Z
dc.date.available 2017-12-19T19:36:52Z
dc.identifier.issn 19443994 spa
dc.identifier.uri http://hdl.handle.net/11407/4380
dc.description The overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved. eng
dc.language.iso Eng spa
dc.publisher Taylor and Francis Inc. spa
dc.relation.ispartof Desalination and Water Treatment spa
dc.relation.ispartof Desalination and Water Treatment Volume 60, 1 January 2017, Pages 88-105 spa
dc.relation.isversionof https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017169971&doi=10.5004%2fdwt.2017.0287&partnerID=40&md5=fb55be8bc0d23854fb7136155d17f322 spa
dc.source Scopus spa
dc.source reponame:Repositorio Institucional spa
dc.source instname:Universidad de Medellín spa
dc.title Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide spa
dc.type Article spa
dc.type info:eu-repo/semantics/publishedVersion spa
dc.type info:eu-repo/semantics/article spa
dc.rights.accessRights restrictedAccess spa
dc.contributor.affiliation Acelas, N.Y., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombia spa
dc.contributor.affiliation Flórez, E., Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombia spa
dc.identifier.doi 10.5004/dwt.2017.0287 spa
dc.subject.keyword Adsorption spa
dc.subject.keyword Al-(hydr)oxide spa
dc.subject.keyword DFT spa
dc.subject.keyword Gibbs free energy spa
dc.subject.keyword IR spa
dc.subject.keyword PH spa
dc.subject.keyword Phosphate spa
dc.subject.keyword Wastewater spa
dc.publisher.faculty Facultad de Ciencias Básicas spa
dc.abstract The overabundance of phosphorus in water causes eutrophication of aquatic environments. As a consequence, developing an adsorbent and understanding the adsorption process to remove phosphate is vital for the prevention of eutrophication in lakes. In this study, quantum chemical calculations were used to simulate the adsorption of phosphate on variably charged Al-(hydr)oxide, taking into account both explicit and implicit solvation. The corresponding adsorption reactions were modeled via ligand exchange between phosphate species and surface functional groups (-H2O/-OH-). Gibbs free energies of phosphate adsorption, for inner and outer sphere complexes, using three different simulated pH conditions (acidic, intermediate, and basic) were estimated. The theoretical results indicate that the thermodynamic favorability of phosphate adsorption on Al-(hydr)oxide is directly related to pH. At intermediate pH condition, H-bonded and MM1 complexes present the most thermodynamically favorable mode of adsorption with -126.2 kJ/mol and -107.8 kJ/mol, respectively. At high pH, simulated IR spectra show that the values of P-O and P-OH stretching modes shifted to higher frequencies with respect to those at low pH. © 2017 Desalination Publications. All rights reserved. eng
dc.affiliation Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Colombia, Carrera 87 No. 30-65, Medellín, Colombia spa
dc.source.bibliographicCitation Acelas, N. Y., Flórez, E., & López, D. (2015). Phosphorus recovery through struvite precipitation from wastewater: Effect of the competitive ions. Desalination and Water Treatment, 54(9), 2468-2479. doi:10.1080/19443994.2014.902337 spa
dc.source.bibliographicCitation Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353-1360. doi:10.1016/j.chemosphere.2014.02.024 spa
dc.source.bibliographicCitation Acelas, N. Y., Mejia, S. M., Mondragón, F., & Flórez, E. (2013). Density functional theory characterization of phosphate and sulfate adsorption on fe-(hydr)oxide: Reactivity, pH effect, estimation of gibbs free energies, and topological analysis of hydrogen bonds. Computational and Theoretical Chemistry, 1005, 16-24. doi:10.1016/j.comptc.2012.11.002 spa
dc.source.bibliographicCitation Awual, M. R., & Jyo, A. (2011). Assessing of phosphorus removal by polymeric anion exchangers. Desalination, 281(1), 111-117. doi:10.1016/j.desal.2011.07.047 spa
dc.source.bibliographicCitation Awual, M. R., Jyo, A., El-Safty, S. A., Tamada, M., & Seko, N. (2011). A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. Journal of Hazardous Materials, 188(1-3), 164-171. doi:10.1016/j.jhazmat.2011.01.092 spa
dc.source.bibliographicCitation Awual, M. R., Jyo, A., Ihara, T., Seko, N., Tamada, M., & Lim, K. T. (2011). Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Research, 45(15), 4592-4600. doi:10.1016/j.watres.2011.06.009 spa
dc.source.bibliographicCitation Babatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108-115. doi:10.1016/j.cej.2007.03.013 spa
dc.source.bibliographicCitation Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium.Bioresource Technology, 99(18), 8685-8690. doi:10.1016/j.biortech.2008.04.015 spa
dc.source.bibliographicCitation Blaney, L. M., Cinar, S., & SenGupta, A. K. (2007). Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 41(7), 1603-1613. doi:10.1016/j.watres.2007.01.008 spa
dc.source.bibliographicCitation Chen, Y. S. R., Butler, J. N., & Stumm, W. (1973). Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environmental Science and Technology, 7(4), 327-332. doi:10.1021/es60076a007 spa
dc.source.bibliographicCitation Chubar, N. I., Kanibolotskyy, V. A., Strelko, V. V., Gallios, G. G., Samanidou, V. F., Shaposhnikova, T. O., . . . Zhuravlev, I. Z. (2005). Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1-3), 55-63. doi:10.1016/j.colsurfa.2004.12.015 spa
dc.source.bibliographicCitation Cumbal, L., & Sengupta, A. K. (2005). Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of donnan membrane effect. Environmental Science and Technology, 39(17), 6508-6515. doi:10.1021/es050175e spa
dc.source.bibliographicCitation Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270-275. doi:10.1016/j.jcis.2004.06.015 spa
dc.source.bibliographicCitation Genz, A., Kornmüller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38(16), 3523-3530. doi:10.1016/j.watres.2004.06.006 spa
dc.source.bibliographicCitation He, G., Pan, G., & Zhang, M. (2011). Studies on the reaction pathway of arsenate adsorption at water-TiO2 interfaces using density functional theory. Journal of Colloid and Interface Science, 364(2), 476-481. doi:10.1016/j.jcis.2011.08.040 spa
dc.source.bibliographicCitation He, G., Zhang, M., & Pan, G. (2009). Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: Thermodynamic, DFT, and EXAFS interpretations. Journal of Physical Chemistry C, 113(52), 21679-21686. doi:10.1021/jp906019e spa
dc.source.bibliographicCitation Jaffer, Y., Clark, T. A., Pearce, P., & Parsons, S. A. (2002). Potential phosphorus recovery by struvite formation. Water Research, 36(7), 1834-1842. doi:10.1016/S0043-1354(01)00391-8 spa
dc.source.bibliographicCitation Keith, T. A., & Frisch, M. J. (1994). Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation, modeling the hydrogen bond. American Chemical Society, 22-35. spa
dc.source.bibliographicCitation Kney, A. D., & Zhao, D. (2004). A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process. Environmental Technology, 25(5), 533-542. spa
dc.source.bibliographicCitation Kubicki, J. D. (1998). Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces. American Mineralogist, 83(9-10), 1054-1066. spa
dc.source.bibliographicCitation Kuzawa, K., Jung, Y. -., Kiso, Y., Yamada, T., Nagai, M., & Lee, T. -. (2006). Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere, 62(1), 45-52. doi:10.1016/j.chemosphere.2005.04.015 spa
dc.source.bibliographicCitation Ladeira, A. C. Q., Ciminelli, V. S. T., Duarte, H. A., Alves, M. C. M., & Ramos, A. Y. (2001). Mechanism of anion retention from EXAFS and density functional calculations: Arsenic (V) adsorbed on gibbsite.Geochimica Et Cosmochimica Acta, 65(8), 1211-1217. doi:10.1016/S0016-7037(00)00581-0 spa
dc.source.bibliographicCitation Lee, S. I., Weon, S. Y., Lee, C. W., & Koopman, B. (2003). Removal of nitrogen and phosphate from wastewater by addition of bittern. Chemosphere, 51(4), 265-271. doi:10.1016/S0045-6535(02)00807-X spa
dc.source.bibliographicCitation Luengo, C. V., Castellani, N. J., & Ferullo, R. M. (2015). Quantum chemical study on surface complex structures of phosphate on gibbsite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 147, 193-199. doi:10.1016/j.saa.2015.03.013 spa
dc.source.bibliographicCitation Manning, B. A., Fendorf, S. E., & Goldberg, S. (1998). Surface structures and stability of arsenic (III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32(16), 2383-2388. doi:10.1021/es9802201 spa
dc.source.bibliographicCitation Midorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbentdoi:10.2166/wst.2008.537 spa
dc.source.bibliographicCitation Paul, K. W., Borda, M. J., Kubicki, J. D., & Sparks, D. L. (2005). Effect of dehydration on sulfate coordination and speciation at the fe-(hydr)oxide-water interface: A molecular orbital/density functional theory and fourier transform infrared spectroscopic investigation. Langmuir, 21(24), 11071-11078. doi:10.1021/la050648v spa
dc.source.bibliographicCitation Paul, K. W., Kubicki, J. D., & Sparks, D. L. (2006). Quantum chemical calculations of sulfate adsorption at the AI- and fe-(hydr)oxide-H2O interface - estimation of gibbs free energies. Environmental Science and Technology, 40(24), 7717-7724. doi:10.1021/es061139y spa
dc.source.bibliographicCitation Paul, K. W., Kubicki, J. D., & Sparks, D. L. (2007). Sulphate adsorption at the fe (hydr)oxide-H2O interface: Comparison of cluster and periodic slab DFT predictions. European Journal of Soil Science, 58(4), 978-988. doi:10.1111/j.1365-2389.2007.00936.x spa
dc.source.bibliographicCitation Persson, P., Nilsson, N., & Sjöberg, S. (1996). Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. Journal of Colloid and Interface Science, 177(1), 263-275. doi:10.1006/jcis.1996.0030 spa
dc.source.bibliographicCitation Regelink, I. C., Weng, L., Lair, G. J., & Comans, R. N. J. (2015). Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: A mechanistic modelling study. European Journal of Soil Science, 66(5), 867-875. doi:10.1111/ejss.12285 spa
dc.source.bibliographicCitation Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors.Journal of Physical Chemistry, 100(41), 16502-16513. doi:10.1021/jp960976r spa
dc.source.bibliographicCitation Sengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318-3330. doi:10.1016/j.watres.2011.03.044 spa
dc.source.bibliographicCitation Sherman, D. M., & Randall, S. R. (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica Et Cosmochimica Acta, 67(22), 4223-4230. doi:10.1016/S0016-7037(03)00237-0 spa
dc.source.bibliographicCitation Shin, E. W., Han, J. S., Jang, M., Min, S. -., Park, J. K., & Rowell, R. M. (2004). Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents.Environmental Science and Technology, 38(3), 912-917. doi:10.1021/es030488e spa
dc.source.bibliographicCitation Suzuki, T. M., Bomani, J. O., Matsunaga, H., & Yokoyama, T. (2000). Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. Reactive and Functional Polymers, 43(1), 165-172. doi:10.1016/S1381-5148(99)00038-3 spa
dc.source.bibliographicCitation Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., & Tamura, T. (2003). Removal of phosphate by aluminum oxide hydroxide. Journal of Colloid and Interface Science, 257(1), 135-140. doi:10.1016/S0021-9797(02)00008-5 spa
dc.source.bibliographicCitation Tejedor-Tejedor, M. I., & Anderson, M. A. (1990). Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6(3), 602-611. doi:10.1021/la00093a015 spa
dc.source.bibliographicCitation Van Riemsdijk, W., & Lyklema, J. (1980). Reaction of phosphate with gibbsite (AI(OH)3) beyond the adsorption maximum. Journal of Colloid and Interface Science, 76(1), 55-66. doi:10.1016/0021-9797(80)90270-2 spa
dc.source.bibliographicCitation Wu, R. S. S., Lam, K. H., Lee, J. M. N., & Lau, T. C. (2007). Removal of phosphate from water by a highly selective la(III)-chelex resin. Chemosphere, 69(2), 289-294. doi:10.1016/j.chemosphere.2007.04.022 spa
dc.source.bibliographicCitation Xu, Y. -., Ohki, A., & Maeda, S. (2000). Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded shirasu-zeolite. Toxicological and Environmental Chemistry, 76(1-2), 111-124. doi:10.1080/02772240009358921 spa
dc.source.bibliographicCitation Yang, X., Wang, D., Sun, Z., & Tang, H. (2007). Adsorption of phosphate at the aluminum (hydr)oxides-water interface: Role of the surface acid-base properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 297(1-3), 84-90. doi:10.1016/j.colsurfa.2006.10.028 spa
dc.source.bibliographicCitation Zhao, D., & Sengupta, A. K. (1998). Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 32(5), 1613-1625. doi:10.1016/S0043-1354(97)00371-0 spa
dc.source.bibliographicCitation Zhu, X., & Jyo, A. (2005). Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 39(11), 2301-2308. doi:10.1016/j.watres.2005.04.033 spa


Archivos en el ítem

Archivos Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta