Repositorio Institucional

Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

Mostrar el registro sencillo del ítem

dc.creator Gloria E.C. spa
dc.creator Ederley V. spa
dc.creator Gladis M. spa
dc.creator César H. spa
dc.creator Jaime O. spa
dc.creator Oscar A. spa
dc.creator José I.U. spa
dc.creator Franklin J. spa
dc.date 2017 spa
dc.date.accessioned 2017-12-19T19:36:52Z
dc.date.available 2017-12-19T19:36:52Z
dc.identifier.issn 17426588 spa
dc.identifier.uri http://hdl.handle.net/11407/4382
dc.description The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd. eng
dc.language.iso Eng spa
dc.publisher Institute of Physics Publishing spa
dc.relation.ispartof Journal of Physics: Conference Series spa
dc.relation.ispartof Journal of Physics: Conference Series Volume 850, Issue 1, 13 June 2017 spa
dc.relation.isversionof https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021887156&doi=10.1088%2f1742-6596%2f850%2f1%2f012023&partnerID=40&md5=79ecba148e8d8ca3472a80e6fcc9d807 spa
dc.source Scopus spa
dc.source reponame:Repositorio Institucional spa
dc.source instname:Universidad de Medellín spa
dc.title Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity spa
dc.type Conference Paper spa
dc.type info:eu-repo/semantics/publishedVersion spa
dc.type info:eu-repo/semantics/conferenceObject spa
dc.rights.accessRights restrictedAccess spa
dc.contributor.affiliation Gloria, E.C., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia spa
dc.contributor.affiliation Ederley, V., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia spa
dc.contributor.affiliation Gladis, M., Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, Colombia spa
dc.contributor.affiliation César, H., Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia spa
dc.contributor.affiliation Jaime, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia spa
dc.contributor.affiliation Oscar, A., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia spa
dc.contributor.affiliation José, I.U., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia spa
dc.contributor.affiliation Franklin, J., Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia spa
dc.identifier.doi 10.1088/1742-6596/850/1/012023 spa
dc.subject.keyword Antibacterial Activity spa
dc.subject.keyword mesophilic bacteria spa
dc.subject.keyword nanomaterial synthesis spa
dc.subject.keyword Silver Nanoparticules spa
dc.subject.keyword Bacteria spa
dc.subject.keyword Bactericides spa
dc.subject.keyword Ionic liquids spa
dc.subject.keyword Metal nanoparticles spa
dc.subject.keyword Nanoparticles spa
dc.subject.keyword Nanostructured materials spa
dc.subject.keyword Particle size spa
dc.subject.keyword Scanning electron microscopy spa
dc.subject.keyword Solutions spa
dc.subject.keyword Surface plasmon resonance spa
dc.subject.keyword Synthesis (chemical) spa
dc.subject.keyword Ultraviolet visible spectroscopy spa
dc.subject.keyword Anti-bacterial activity spa
dc.subject.keyword Bactericidal activity spa
dc.subject.keyword Chemical reduction methods spa
dc.subject.keyword Mesophilic bacteria spa
dc.subject.keyword Nanoparticules spa
dc.subject.keyword Silver nanoparticles spa
dc.subject.keyword Silver nanoparticles (AgNps) spa
dc.subject.keyword UV visible spectroscopy spa
dc.subject.keyword Silver spa
dc.publisher.faculty Facultad de Ingenierías spa
dc.publisher.faculty Facultad de Ciencias Básicas spa
dc.abstract The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. © Published under licence by IOP Publishing Ltd. eng
dc.affiliation Departamento de Facultad de Ciencias Básicas, Grapo de Materials Nanoestracturados y Biomodelación, MATBIOM, Universidad de Medellín, Colombia spa
dc.affiliation Facultad de Ingenierías, Grupo de Investigaciones y Mediciones Ambientales - GEMA, Universidad de Medellín, Medellín, Colombia spa
dc.affiliation Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia spa
dc.affiliation Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia spa
dc.source.bibliographicCitation Contescu, C. I., & Putyera, K. (2009). Dekker Encyclopedia of Nanoscience and Nanotechnology, 1-6. spa
dc.source.bibliographicCitation Dang, T. M. D., Le, T. T. T., Fribourg-Blanc, E., & Dang, M. C. (2011). Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2(1) doi:10.1088/2043-6262/2/1/015009 spa
dc.source.bibliographicCitation Guzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111. spa
dc.source.bibliographicCitation Kuisma, M., Sakko, A., Rossi, T. P., Larsen, A. H., Enkovaara, J., Lehtovaara, L., & Rantala, T. T. (2015). Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B - Condensed Matter and Materials Physics, 91(11) doi:10.1103/PhysRevB.91.115431 spa
dc.source.bibliographicCitation Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409-453. doi:10.1080/01442350050034180 spa
dc.source.bibliographicCitation Marambio-Jones, C., & Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551. doi:10.1007/s11051-010-9900-y spa
dc.source.bibliographicCitation Saion, E., Gharibshahi, E., & Naghavi, K. (2013). Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. International Journal of Molecular Sciences, 14(4), 7880-7896. doi:10.3390/ijms14047880 spa
dc.source.bibliographicCitation Shenashen, M. A., El-Safty, S. A., & Elshehy, E. A. (2014). Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293-316. doi:10.1002/ppsc.201300181 spa
dc.source.bibliographicCitation Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418. doi:10.1016/j.procbio.2005.01.025 spa
dc.source.bibliographicCitation Wang, J. -., Wen, L. -., Wang, Z. -., & Chen, J. -. (2006). Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Materials Chemistry and Physics, 96(1), 90-97. doi:10.1016/j.matchemphys.2005.06.045 spa


Archivos en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Listar

Mi cuenta