Mostrar el registro sencillo del ítem

dc.creatorOsorio J.D.
dc.creatorRivera-Alvarez A.
dc.creatorOrdonez J.C.
dc.date2019
dc.date.accessioned2021-02-05T14:59:06Z
dc.date.available2021-02-05T14:59:06Z
dc.identifier.issn22131388
dc.identifier.urihttp://hdl.handle.net/11407/6069
dc.descriptionThe effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law efficiencies of concentrated solar collectors as a function of the absorber temperature and concentration ratio. The results are compared with the respective traditional collector configurations without TIM. In general, high concentration ratios are fundamental to maintain high efficiencies. The incorporation of a TIM into concentrated solar collectors leads to higher thermal efficiencies at high operating temperatures even at low concentration ratios. An equivalent second law efficiency to that of the reference collector configuration can be achieved at lower concentration ratios by incorporating a TIM in parabolic trough or a TIM and a glass envelope in central receiver collectors. The idea of using a TIM deserves further exploration as it seems to be a promising alternative that contributes to a more efficient and cost-effective technology. © 2019 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061563054&doi=10.1016%2fj.seta.2019.01.005&partnerID=40&md5=d71bedf8f16ea8e88ceb6bbaf3f39d1b
dc.sourceSustainable Energy Technologies and Assessments
dc.titleEffect of the concentration ratio on energetic and exergetic performance of concentrating solar collectors with integrated transparent insulation materials
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.identifier.doi10.1016/j.seta.2019.01.005
dc.relation.citationvolume32
dc.relation.citationstartpage58
dc.relation.citationendpage70
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationOsorio, J.D., Power & Energy System Department, Idaho National Laboratory, Idaho Falls, ID 83402, United States, Ingeniería en Energía, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia
dc.affiliationRivera-Alvarez, A., Ingeniería Térmica Ltda., Medellín, Colombia, Fundación Ergon, Medellín, Colombia
dc.affiliationOrdonez, J.C., Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, and Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310, United States
dc.relation.referencesIslam, M.T., Huda, N., Abdullah, A.B., Saidur, R., A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends (2018) Renewable Sustainable Energy Rev, 91, pp. 987-1018
dc.relation.references(2018), https://www.nrel.gov/csp/solarpaces/parabolic_trough.cfm, Parabolic Trough Projects. National Renewable Energy Laboratory – NREL., Accessed August 13
dc.relation.referencesBehar, O., Khellaf, A., Mohammedi, K., A review of studies on central receiver solar thermal power plants (2013) Renewable Sustainable Energy Rev, 23, pp. 12-39
dc.relation.references(2018), https://www.nrel.gov/csp/solarpaces/power_tower.cfm, Power Tower Projects. National Renewable Energy Laboratory – NREL., Accessed August 13
dc.relation.referencesKalogirou, S.A., Solar thermal collectors and applications (2004) Prog Energy Combust Sci, 30, pp. 231-295
dc.relation.referencesChacartegui, R., Muñoz de Escalona, J.M., Sánchez, D., Monje, B., Sánchez, T., Alternative cycles based on carbon dioxide for central receiver solar power plants (2011) Appl Therm Eng, 31, pp. 872-879
dc.relation.referencesVignarooban, K., Xu, X., Arvay, A., Hsu, K., Kannan, A.M., Heat transfer fluids for concentrating solar power systems – a review (2015) Appl Energy, 146, pp. 383-396
dc.relation.referencesMarocco, L., Cammi, G., Flesch, J., Wetzel, T., Numerical analysis of a solar tower receiver tube operated with liquid metals (2016) Int J Therm Sci, 105, pp. 22-35
dc.relation.referencesOsorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO 2 -based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368
dc.relation.referencesWang, Q., Yang, H., Huang, X., Li, J., Pei, G., Numerical investigation and experimental validation of the impacts of an inner radiation shield on parabolic trough solar receivers (2018) Appl Therm Eng, 132, pp. 381-392
dc.relation.referencesWirz, M., Petit, J., Haselbacher, A., Steinfeld, A., Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators (2014) Sol Energy, 107, pp. 398-414
dc.relation.referencesOsorio, J.D., Rivera-Alvarez, A., Performance analysis of parabolic trough collectors with double glass envelope Renewable Energy, 130, pp. 1092-1107. , 2019
dc.relation.referencesOsorio, J.D., Rivera-Alvarez, A., Girurugwiro, P., Yang, S., Hovsapian, R., Ordonez, J.C., Integration of transparent insulation materials into solar collector devices (2017) Sol Energy, 147, pp. 8-21
dc.relation.referencesLewkowicz, M.K., Alsaqoor, S., Alahmer, A., Borowski, G., Modeling and optimization of transparent thermal insulation material (2018) J Sol Energy Eng, 140 (5)
dc.relation.referencesKessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl Energy, 133, pp. 206-223
dc.relation.referencesCadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol Energy, 107, pp. 202-209
dc.relation.referencesHirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol Energy, 97, pp. 305-313
dc.relation.referencesHellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renewable Energy, 28 (3), pp. 331-344
dc.relation.referencesUhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc, 49, pp. 538-550
dc.relation.referencesHafez, A.Z., Attia, A.M., Eltwab, H.S., ElKousy, A.O., Afifi, A.A., AbdElhamid, A.G., Design analysis of solar parabolic trough thermal collectors (2018) Renewable Sustainable Energy Rev, 82, pp. 1215-1260
dc.relation.referencesHo, C.K., Advances in central receivers for concentrating solar applications (2017) Sol Energy, 152, pp. 38-56
dc.relation.referencesMwesigye, A., Bello-Ochende, T., Meyer, J.P., Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios (2014) Energy, 73, pp. 606-617
dc.relation.referencesZheng, H., Yu, X., Su, Y., Riffat, S., Xiong, J., Thermodynamic analysis of an idealised solar tower thermal power plant (2015) Appl Therm Eng, 81, pp. 271-278
dc.relation.referencesTyagi, S.K., Wang, S., Singhal, M.K., Kaushik, S.C., Park, S.R., Exergy analysis and parametric study of concentrating type solar collectors (2007) Int J Therm Sci, 46, pp. 1304-1310
dc.relation.referencesXu, C., Wang, Z., Li, X., Sun, F., Energy and exergy analysis of solar power tower plants (2011) Appl Therm Eng, 31, pp. 3904-3913
dc.relation.referencesLi, L., Coventry, J., Bader, R., Pye, J., Lipiński, W., Optics of solar central receiver systems: a review (2016) Opt Express, 24 (14), pp. A985-A1007
dc.relation.referencesRodriguez-Sanchez, D., Rosengarten, G., Improving the concentration ratio of parabolic troughs using a second-stage flat mirror (2015) Appl Energy, 159, pp. 620-632
dc.relation.referencesForristall, R., Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver, NREL Report (2003), NREL/TP-550-34169
dc.relation.referencesRodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl Therm Eng, 63, pp. 428-438
dc.relation.referencesHo, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renewable Sustainable Energy Rev, 29, pp. 835-846
dc.relation.referencesDuffie, J.A., Beckman, W.A., Solar engineering of thermal processes (2013), 4th ed. Wiley
dc.relation.referencesBergman, T.L., Lavine, A.S., Incropera, F.P., D (2012) Fundamentals of heat and mass transfer, , P. DeWitt 7th ed. Wiley
dc.relation.referencesIverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO 2 Brayton cycles for solar-thermal energy (2013) Appl Energy, 111, pp. 957-970
dc.relation.referencesVasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl Energy, 88, pp. 5097-5110
dc.relation.referencesRodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc, 49, pp. 504-513
dc.relation.referencesFarooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renewable Energy, 33, pp. 1275-1285
dc.relation.referencesChwieduk, D., Solar energy in buildings: thermal balance for efficient heating and cooling (2014), 1st ed. Academic Press
dc.relation.references(2018), http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, Schott optical glass datasheet. 2017., Accessed: August 13
dc.relation.referencesPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120 (2002), Sandia National Laboratories
dc.relation.referencesHo, C.Y., Chu, T.K., Electrical resistivity and thermal conductivity of nine selected AISI stainless steels (1977), American Iron and Steel Institute CINDAS report 45
dc.relation.references(2018), http://www.matweb.com/search/datasheet.aspx?matguid=8df9f3e0106d43818ebe1862e76a1107, MatWeb material property data, Schott D 263 thin borosilicate glass., Accessed August 13
dc.relation.referencesBejan, A., (2013), Convection Heat Transfer, Wiley, fourth edition
dc.relation.referencesDudley, V.E., Kolb, G.J., Sloan, M., Kearney, D., Test results: SGES LS-2 solar collector. Technical report SANDe94-1884 (1994), Sandia National Laboratory
dc.relation.referencesBoudaoud, S., Khellaf, A., Mohammedi, K., Behar, O., Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria (2015) Energy Convers Manage, 89, pp. 655-664
dc.relation.referencesKolb, G.J., Ho, C., Mancini, T.R., Gary, J.A., Power tower technology roadmap and cost reduction plan. Sandia Report (2011)
dc.relation.referencesPetela, R., Exergy of heat radiation (1964) J Heat Transfer, 86 (2), pp. 187-192
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem