Show simple item record

Características térmicas de un nanocompuesto de TIO2 en una matriz de poliuretano elaborada con aceite de higuerilla

dc.contributor.authorGordillo Delgado, Fernando
dc.contributor.authorHernández Zarta, Hector Hernán
dc.date.accessioned2023-11-28T16:26:11Z
dc.date.available2023-11-28T16:26:11Z
dc.date.created2020-10-23
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8206
dc.descriptionNanocomposites are multiphase structures with at least one pase dimension of nanometric order size. Polymer-based materials mixed with low proportions of titanium dioxide nanoparticles (NPs-TiO2) are a versatile alternative in different industrial applications, considering the optimization of mechanical and thermal properties with respect to pure polymers and conventional materials. In this work, the synthesis and thermal characteristics measurement of a nanocomposite formed by anatase phase Nps-TiO2 of 5 nm particle size in a polyurethane matrix is reported. The polymeric matrix was obtained through the reaction between the self-condensation of castor oil and diphenylmethane diisocyanate (MDI), while sol-gel technique was used in the synthesis of NPs-TiO2, using titanium (IV)-bis(acetylacetonate) diisopropoxide as precursor. Specific heat (Cp) of the samples was measured by means of the thermal relaxation method and thermal diffusivity (α) was determined with the photoacoustic technique. Cp of the nanocomposite increased by 12.98 % due to addition of the NPs, while α decreased by 98.63 %, compared to corresponding values of the polyurethane matrix. With a concentration of 3 wt % of NPs-TiO2 in the matrix, these termal parameters were found below average values of conventional plastics.eng
dc.descriptionLos nanocompuestos son estructuras multifásicas con por lo menos una dimensión de una de las fases de tamaño de orden nanométrico. Los materiales de base polimérica, mezclados con bajas proporciones de nanopartículas de dióxido de titanio (Nps-TiO2), son una alternativa versátil en diferentes aplicaciones industriales, considerando la optimización de propiedades mecánicas y térmicas con respecto a polímeros puros y materiales convencionales. En este trabajo se reportan la síntesis y la medición de características térmicas de un nanocompuesto conformado por NPs-TiO2, fase anatasa de tamaño de partícula de 5 nm, en una matriz de poliuretano, elaborada con aceite de higuerilla. La matriz polimérica se obtuvo a través de la reacción entre la autocondensación del aceite de higuerilla y diisocianato de difenilmetano (MDI), mientras que en la síntesis de las NPs-TiO2 se usó la técnica sol-gel, utilizando como precursor titanio (IV)-bis(acetilacetonato) diisopropóxido. El calor específico (Cp) de las muestras fue medido por medio del método de relajación térmica y con la técnica fotoacústica se determinó la difusividad térmica (α). Con la adición de las NPs el Cp del nanocompuesto aumentó en 12.98 %, mientras que la α disminuyó en 98,63 %, en comparación con los correspondientes valores obtenidos para la matriz de poliuretano. Con una concentración del 3 % en peso de NPs-TiO2 en la matriz se encontraron parámetros térmicos por debajo de los valores promedio de los plásticos convencionales.spa
dc.formatPDF
dc.format.extentp. 147-165
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3263
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 147-165
dc.subjectThermal conductivityeng
dc.subjectDiffusivityeng
dc.subjectEffusivenesseng
dc.subjectPhotoacousticeng
dc.subjectNanocompositoseng
dc.subjectPolymereng
dc.subjectThermal relaxationeng
dc.subjectConductividad térmicaspa
dc.subjectdifusividadspa
dc.subjectEfusividadspa
dc.subjectFotoacústicaspa
dc.subjectNanocompuestosspa
dc.subjectPolímerospa
dc.subjectRelajación térmicaspa
dc.titleThermal Characteristics of TIO2 Nanocomposite in a Polyurethane Matrix Made with Castor Oileng
dc.titleCaracterísticas térmicas de un nanocompuesto de TIO2 en una matriz de poliuretano elaborada con aceite de higuerillaspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v20n39a9
dc.relation.citationvolume20
dc.relation.citationissue39
dc.relation.citationstartpage147
dc.relation.citationendpage165
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesM. A. Alaa, K. Yusoh, and S. F. Hasany, “Comparative study of physico-chemical properties of pure polyurethane and polyurethane based on castor oil,” in Advanced Materials Research, 2014, vol. 983, pp. 39–43, www.scientific.net/AMR.983.39.
dc.relation.referencesÍ. C. Rios et al., “Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market,” Ind. Crops Prod., vol. 145, p. 112000, 2020, doi: https://doi.org/10.1016/j.indcrop.2019.112000
dc.relation.referencesY. Hu, C. Liu, Q. Shang, and Y. Zhou, “Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate,” J. Coatings Technol. Res., vol. 15, no. 1, pp. 77–85, 2018, doi: 10.1007/s11998-017-9948-z.
dc.relation.referencesT. Gurunathan, S. Mohanty, and S. K. Nayak, “Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization,” Prog. Org. Coatings, vol. 80, pp. 39–48, 2015, doi: 10.1016/j.porgcoat.2014.11.017.
dc.relation.referencesX. P. An, J. H. Chen, Y. D. Li, J. Zhu, and J. B. Zeng, “Rational design of sustainable polyurethanes from castor oil: towards simultaneous reinforcement and toughening,” Sci. China Mater., vol. 61, no. 7, pp. 993–1000, 2018, doi: 10.1007/s40843-017-9192-8.
dc.relation.referencesK. P. Somani, S. S. Kansara, N. K. Patel, and A. K. Rakshit, “Castor oil based polyurethane adhesives for wood-to-wood bonding,” Int. J. Adhes. Adhes., vol. 23, no. 4, pp. 269–275, 2003, doi: 10.1016/S0143-7496(03)00044-7.
dc.relation.referencesB. B. R. Silva, R. M. C. Santana, and M. M. C. Forte, “A solventless castor oil-based PU adhesive for wood and foam substrates,” Int. J. Adhes. Adhes., vol. 30, no. 7, pp. 559–565, 2010, doi: 10.1016/j.ijadhadh.2010.07.001.
dc.relation.referencesB. Fahrngruber, J. Eichelter, S. Erhäusl, B. Seidl, R. Wimmer, and N. Mundigler, “Potatofiber modified thermoplastic starch: Effects of fiber content on material properties and compound characteristics,” Eur. Polym. J., vol. 111, pp. 170–177, 2019, doi: 10.1016/j.eurpolymj.2018.10.050.
dc.relation.referencesI. S. Ristić et al., “Thermal stability of polyurethane materials based on castor oil as polyol component,” J. Therm. Anal. Calorim., vol. 111, no. 2, pp. 1083–1091, 2013, doi: 10.1007/s10973-012-2497-x.
dc.relation.referencesI. S. Ristić et al., “The properties of polyurethane hybrid materials based on castor oil,” Mater. Chem. Phys., vol. 132, no. 1, pp. 74–81, 2012, doi: 10.1016/j.matchemphys.2011.10.053.
dc.relation.referencesV. V. Gite, A. B. Chaudhari, R. D. Kulkarni, and D. G. Hundiwale, “Renewable sourcebased polyurethane coatings by using monoglycerides of vegetable oils and its modification by nano TiO2,” Pigment Resin Technol., vol. 42, no. 6, pp. 353–361, 2013, doi: 10.1108/PRT-02-2012-0017.
dc.relation.referencesA. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, “Effect of various plasticizers and concentration on the physical, thermal , mechanical , and structural properties of cassavastarch-based films,” pp. 1–11, 2016, doi: 10.1002/star.201500366.
dc.relation.referencesJ. Pavličević et al., “The effect of TiO2 particles on thermal properties of polycarbonate-based polyurethane nanocomposite films,” J. Therm. Anal. Calorim., vol. 138, no. 3, pp. 2043–2055, 2019, doi: 10.1007/s10973-019-08750-3.
dc.relation.referencesF. J. Aguilar-pérez et al., “Titanium - castor oil based polyurethane composite foams for bone tissue engineering,” J. Biomater. Sci. Polym. Ed., vol. 30, no. 15, pp. 1–18, 2019, doi:10.1080/09205063.2019.1636352.
dc.relation.referencesS. Kharroub, S. Laflamme, S. Madbouly, and F. Ubertini, “Bio-based soft elastomeric capacitor for structural health monitoring applications,” Struct. Heal. Monit., vol. 14, no. 2, pp. 158–167, 2015, doi: 10.1177/1475921714560072.
dc.relation.referencesS. A. Yesudass, S. Mohanty, and S. K. Nayak, “Facile synthesis of bio-sourced polyurethanefluorosilane modified TiO2 hybrid coatings for high-performance self cleaning application,”J. Polym. Res., vol. 25, no. 2, pp. 1–10, 2018, doi: 10.1007/s10965-017-1430-1.
dc.relation.referencesS. Chen, Q. Wang, T. Wang, and X. Pei, “Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites,” Mater. Des., vol. 32, no. 2, pp. 803–807, 2011, doi: 10.1016/j.matdes.2010.07.021.
dc.relation.referencesM. Malik and R. Kaur, “Mechanical and Thermal Properties of Castor Oil–Based Polyurethane Adhesive: Effect of TiO2 Filler,” Adv. Polym. Technol., vol. 37, no. 1, pp. 24–30, 2018, doi: 10.1002/adv.21637.
dc.relation.referencesM. Alam, N. M. Alandis, F. Zafar, E. Sharmin, and Y. M. Al-Mohammadi, “Polyurethane-TiO2 nanocomposite coatings from sunflower- oil-based amide diol as soft segment,”J. Macromol. Sci. Part A Pure Appl. Chem., vol. 55, no. 10, pp. 698–708, 2018, doi: 10.1080/10601325.2018.1526638.
dc.relation.referencesS. K. Jaganathan, M. P. Mani, A. Z. M. Khudzari, A. F. Ismail, M. Ayyar, and R. Rathanasamy, “Enriched physicochemical and blood-compatible properties of nanofibrous polyurethane patch engrafted with juniper oil and titanium dioxide for cardiac tissue engineering,” Int. J. Polym. Anal. Charact., vol. 24, no. 8, pp. 696–708, 2019, doi: 10.1080/1023666X.2019.1662590.
dc.relation.referencesH. Shin, S. Yang, S. Chang, S. Yu, and M. Cho, “Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance,” Polymer (Guildf)., vol. 54, no. 5, pp. 1543–1554, 2013, doi: https://doi.org/10.1016/j.polymer.2013.01.020.
dc.relation.referencesL. H. Poley et al., “Photothermal Methods and Atomic Force Microscopy Images Applied to the Study of Poly ( 3-Hydroxybutyrate ) and Poly ( 3-Hydroxybutyrate- co -3-Hydroxyvalerate) Dense Membranes,” 2000, doi: 10.1002/app.21891.
dc.relation.referencesA. Bedoya, E. Marín, A. M. Mansanares, M. A. Zambrano-Arjona, I. Riech, and A. Calderón, “On the thermal characterization of solids by photoacoustic calorimetry: thermal diffusivity and linear thermal expansion coefficient,” Thermochim. Acta, vol. 614, pp. 52–58, 2015, doi: https://doi.org/10.1016/j.tca.2015.06.009.
dc.relation.referencesA. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys., vol. 47, no. 1, pp. 64–69, 1976, doi: 10.1063/1.322296.
dc.relation.referencesM. R. Nisha, M. S. Jayalakshmy, and J. Philip, “Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering,” Pramana - J. Phys., vol. 81, no. 5, pp. 849–864, 2013, doi: 10.1007/s12043-013-0605-5.
dc.relation.referencesS. Nishigori, N. Miyamoto, T. Ikeda, and T. Ito, “Specific heat of CeRh2Si2 under high pressure measured by a thermal relaxation method,” Phys. B Condens. Matter, vol. 359–361, pp. 172–174, 2005, doi: https://doi.org/10.1016/j.physb.2005.01.026.
dc.relation.referencesY. Ochoa, Y. Ortegón, J. Enrique, and R. Páez, “Síntesis de TiO2, fase anatasa, por el método solgel: Estudio del efecto de la presencia de AcacH en el sistema,” pp. 29–40, 2010.
dc.relation.referencesM. Cargnello, T. R. Gordon, and C. B. Murray, “Solution-phase synthesis of titanium dioxide nanoparticles and nanocr
dc.relation.referencesD. S. Volkov, O. B. Rogova, and M. A. Proskurnin, “Photoacoustic and photothermal methods in spectroscopy and characterization of soils and soil organic matter,” Photoacoustics, vol. 17, p. 100151, 2020, doi: https://doi.org/10.1016/j.pacs.2019.100151.
dc.relation.referencesFernando Gordillo-Delgado and C.-H. DM, “Thermal Diffusivity Behavior of Guadua angustifolia Kunth as a Function of Culm Zone and Moisture Content,” Research Journal of Chemical Sciences vol. 1, no. 9, pp. 17–23, 2011.
dc.relation.referencesT. A. El-Brolossy and S. S. Ibrahim, “Thermal conductivity and heat capacity of poly(3- octylthiophene-2,5 diyl) and its multi-wall carbon nanotube composites,” Phys. Scr., vol. 89, no. 10, 2014, doi: 10.1088/0031-8949/89/10/105701.
dc.relation.referencesA. Bishnoi, S. Kumar, and N. Joshi, “Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites,” in Micro and Nano Technologies, S. Thomas, R. Thomas, A. K. Zachariah, and R. K. B. T.-M. M. in N. C. Mishra, Eds. Elsevier, 2017, pp. 313–337.
dc.relation.referencesA. Haghighatzadeh, “Comparative analysis on optical and photocatalytic properties of chlorophyll/curcumin-sensitized TiO2 nanoparticles for phenol degradation,” Bull. Mater. Sci., vol. 43, no. 1, 2020, doi: 10.1007/s12034-019-2016-9.
dc.relation.referencesM. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, “Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation,” Int. J. Electrochem. Sci., vol. 7, no. 6, pp. 4871–4888, 2012.
dc.relation.referencesL. White, Y. Koo, Y. Yun, and J. Sankar, “TiO2 deposition on AZ31 magnesium alloy usingplasma electrolytic oxidation,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/319437.
dc.relation.referencesN. Wang, Z. L. Liu, M. W. Shi, and J. Y. Yu, “Effect of the filled titanium dioxide particulates on optical properties of polyester films,” J. Text. Inst., vol. 108, no. 5, pp. 776–782, 2017, doi: 10.1080/00405000.2016.1190497.
dc.relation.referencesS. Ok, “Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils,” Grasas y Aceites, vol. 68, no.1, p. 173, 2017, doi: 10.3989/gya.0678161.
dc.relation.referencesS. Javed, M. Islam, and M. Mujahid, “Synthesis and characterization of TiO2 quantum dots by sol gel reflux condensation method,” Ceram. Int., vol. 45, no. 2, pp. 2676–2679, Feb. 2019, doi: 10.1016/j.ceramint.2018.10.163.
dc.relation.referencesM. Saeedian, M. Mahjour-Shafiei, E. Shojaee, and M. R. Mohammadizadeh, “Specific heat capacity of TiO 2 nanoparticles,” J. Comput. Theor. Nanosci., vol. 9, no. 4, pp. 616–620, 2012, doi: 10.1166/jctn.2012.2070.
dc.relation.referencesR. Sanctuary et al., “Complex specific heat capacity of two nanocomposite systems,” Thermochim. Acta, vol. 445, no. 2, pp. 111–115, 2006, doi: https://doi.org/10.1016/j.tca.2005.05.024
dc.relation.referencesA. Kaushik, D. Ahuja, and V. Salwani, “Synthesis and characterization of organically modified clay/castor oil based chain extended polyurethane nanocomposites,” Compos. Part A Appl. Sci. Manuf., vol. 42, no. 10, pp. 1534–1541, 2011, doi: 10.1016/j.compositesa.2011.07.009.
dc.relation.referencesC. Lorusso et al., “Characterization of polyurethane foam added with synthesized acetic and oleic-modified TiO2Nanocrystals,” Nanomater. Nanotechnol., vol. 5, pp. 1–7, 2015, doi: 10.5772/61275.
dc.relation.referencesW. Zhao, M. Li, and H. X. Peng, “Functionalized MWNT-doped thermoplastic polyurethane nanocomposites for aerospace coating applications,” Macromol. Mater. Eng., vol. 295, no. 9, pp. 838–845, 2010, doi: 10.1002/mame.201000080.
dc.relation.referencesB. He, B. Mortazavi, X. Zhuang, and T. Rabczuk, “Modeling Kapitza resistance of twophase composite material,” Compos. Struct., vol. 152, pp. 939–946, 2016, doi: https://doi.org/10.1016/j.compstruct.2016.06.025.
dc.relation.referencesH. Limami, I. Manssouri, K. Cherkaoui, M. Saadaoui, and A. Khaldoun, “Thermal performance of unfired lightweight clay bricks with HDPE & PET waste plastics additives,” J. Build. Eng., vol. 30, p. 101251, 2020, doi: 10.1016/j.jobe.2020.101251.
dc.relation.referencesE. Mussatti, C. Merlini, G. M. D. O. Barra, S. Güths, A. P. N. De Oliveira, and C. Siligardi, “Evaluation of the properties of iron oxide-filled castor oil polyurethane,” Mater. Res., vol. 16, no. 1, pp. 65–70, 2013, doi: 10.1590/S1516-14392012005000143.
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International