CALIBRACIÓN DE MÉTODOS SIMPLIFICADOS EXISTENTES PARA EL ANÁLISIS DE MUROS ESBELTOS DE CONCRETO REFORZADO

PROYECTO DE GRADO

Estudiantes: Yeison Alzate Jaramillo y Juan Sebastián Villarraga Cortés

Asesor: Ricardo León Bonett Díaz

Fecha: 1 de febrero de 2016

UNIVERSIDAD DE MEDELLÍN
FACULTAD DE INGENIERÍAS
PROGRAMA DE INGENIERÍA CIVIL
MEDELLÍN – ANTIOQUIA
2016
AGRADECIMIENTOS

Esta tesis no solo implicó retos técnicos si no también personales, de los cuales hoy en día seguimos aprendiendo. Agradecemos a la vida por darnos la oportunidad de vivir esta experiencia y haber cumplido esta meta a cabalidad. Expresamos nuestra gratitud a nuestras familias por su apoyo incondicional. Le damos gracias a nuestro tutor Ricardo León Bonett Díaz por sus conocimientos compartidos y el apoyo en este proceso. Gracias a la empresa EstrucMed Ingeniería Especializada, principalmente a su gerente Andrés Felipe Serna Quintero por el acompañamiento técnico y personal. Agradecimientos a todos los que con su aporte nos ayudaron a lograr este objetivo.

Muchas Gracias.
TABLA DE CONTENIDO

1 INTRODUCCIÓN .. 13
 1.1 Motivación .. 14
 1.2 El problema objeto de estudio .. 14
 1.3 Objetivos y alcance ... 15
 1.4 Estructura y contenido .. 16
2 MARCO CONCEPTUAL ... 18
 2.1 Parámetros geométricos .. 18
 2.1.1 Tipos de Muros – Forma ... 19
 2.1.2 Tipos de Muros - Elevación .. 20
 2.1.3 Espesor del muro (b_w) y la relación de aspecto ($A_r = H_w/L_w$) 20
 2.2 Parámetros mecánicos .. 22
 2.2.1 Elementos de borde y confinamiento .. 22
 2.2.2 Relación de carga axial (ALR) ... 25
 2.2.3 Relación Momento – Curvatura .. 25
 2.3 Parámetros para el desempeño .. 26
 2.3.1 Deriva entre piso ... 26
 2.3.2 Rigidez ... 27
 2.3.3 Ductilidad .. 28
 2.3.4 Rótula Plástica ... 29
 2.3.5 Longitud de plastificación ... 30
 2.4 Estabilidad y mecanismos de falla .. 32
2.4.1 Estabilidad ... 32
2.4.2 Pandeo fuera del plano ... 33

3 REVISIÓN DE LA LITERATURA ... 34

3.1 Estabilidad de Muros estructurales dúctiles – “Stability of Ductile Structural Walls”
(Paulay y Priestley, 1993).. 34

3.2 Diseño sísmico basado en el desplazamiento de fluencia para edificios de muros
de concreto reforzado – “Yield displacement-based seismic design of RC wall buildings”
(Tjhin et al, 2007). ... 36

3.3 Comportamiento sísmico de muros esbeltos de concreto reforzado sometidos a un
alto nivel de carga axial – “Seismic behaviour of slender reinforced concrete shear walls
under high axial load ratio” (Su y Wong, 2006)... 41

3.4 Diseño de muros estructurales esbeltos de concreto reforzado basado en
desplazamiento - Verificación Experimental – “Displacement-based design of slender
reinforced concrete structural wall- Experimental verification” (John H. Thomsen and John
W.Wallace, 2004)... 43

4 MODELO ANALITICO PARA EVALUACIÓN DE CAPACIDAD................................. 47

4.1 Relación Momento – Curvatura ... 47

4.1.1 Modelos constitutivos de los materiales ... 48

4.1.2 Descripción de la metodología .. 53

4.2 Curva de capacidad .. 55

4.3 Análisis Paramétrico ... 57

4.3.1 Influencia de la cuantía de refuerzo longitudinal .. 58

4.3.2 Influencia del espesor del muro (tw) ... 60

4.3.3 Influencia de la longitud del muro (Lw) ... 62

4.3.4 Influencia de la resistencia a la compresión (f’c) ... 63

4.3.5 Influencia de la carga axial (P) ... 65
4.4 Ejemplo de aplicación .. 67
5 CASOS DE ESTUDIO .. 70
6 RESULTADOS Y DISCUSIÓN .. 111
 6.1 Descripción de los muros seleccionados ... 111
 6.2 Análisis de la longitud de plastificación ... 112
 6.3 Influencia del espesor (tw) en la respuesta del elemento .. 113
 6.4 Comparación entre Momento-Curvatura experimental y teórico 114
 6.5 Respuesta histerética vs. Representación bilineal .. 117
7 CONCLUSIONES .. 124
8 REFERENCIAS BIBLIOGRÁFICAS .. 131
LISTA DE FOTOGRAFÍAS

Fotografía 5-1. Patrones de grietas, adaptada de [2]. ... 74
Fotografía 5-2. Pandeo del refuerzo longitudinal, adaptada de [2]. 75
Fotografía 5-3. Pandeo del muro fuera del plano, adaptada de [2]. 75
Fotografía 5-4. Vista frontal de la falla – Muro 4, adaptada de [3]. 81
Fotografía 5-5. Vista frontal de la falla – Muro 5, adaptada de [3]. 81
Fotografía 5-6. Vista frontal de la falla – Muro 6, adaptada de [3]. 81
Fotografía 5-7. Vista frontal de la falla – Muro 7, adaptada de [3]. 81
Fotografía 5-8. Vista frontal de la falla – Muro 8, adaptada de [3]. 81
Fotografía 5-9. Vista frontal de la falla – Muro 9, adaptada de [3]. 81
Fotografía 5-10. Vista frontal de la falla – Muro WSH1, adaptada de [4]. 90
Fotografía 5-11. Vista frontal de la falla – Muro WSH2, adaptada de [4]. 90
Fotografía 5-12. Vista frontal de la falla – Muro WSH3, adaptada de [4]. 91
Fotografía 5-14. Vista frontal de la falla – Muro WSH5, adaptada de [4]. 91
Fotografía 5-15. Vista frontal de la falla – Muro WSH6, adaptada de [4]. 91
Fotografía 5-16. Fallas encontradas en el muro B16R8-2, adaptada de [5]. 101
Fotografía 5-17. Fallas encontradas en los muros B14HR8-2 y B14CD8-2, adaptada de [5]. .. 101
Fotografía 5-18. Fallas encontradas en los muros HR12C-1 y CD12C-1, adaptada de [5]. .. 102
Fotografía 5-19. Fallas encontradas en los muros B14HR8U y B14CD8S, adaptada de [5]. .. 106
LISTA DE FIGURAS

Figura 2-1. Esquema con la geometría típica de un muro de hormigón reforzado, adaptada de [1]. ... 18

Figura 2-2. Espesor crítico de muro para control de pandeo fuera del plano, adaptada de [6]. ... 21

Figura 2-3. Elementos de borde y dimensiones mínimas. 23

Figura 2-4. Refuerzo transversal y zonas del concreto confinado y no confiando (FEMA 451, 2006). ... 24

Figura 2-5. Efectos del confinamiento del concreto (FEMA 451, 2006). 24

Figura 2-7. Deriva de total de la edificación. ... 27

Figura 2-9. Comparación entre material frágil y dúctil. .. 29

Figura 2-10. Modelo de muro en voladizo, adaptado de [10]. 32

Figura 2-11. Configuración típica de un muro estructural, adaptado de [6]. 33

Figura 3-1. Pasos fundamentales para desarrollo de la metodología propuesta, adaptado de [7]. ... 38

Figura 3-2. Planta típica del edificio, adaptado de [7]. ... 39

Figura 3-3. Geometría y detallado del refuerzo del muro W1, adaptado de [7].......... 40

Figura 3-4. Planta del edificio, adaptado de [9]. ... 44

Figura 3-5. Perfiles de deformación de los muros RW2 y TW2, adaptado de [9] 46

Figura 4-1. Modelo constitutivo del concreto (Hognestad 1955). 48
Figura 4-2. Modelo constitutivo del concreto (Kent y Park 1971) .. 49
Figura 4-3. Modelo constitutivo del concreto (Mander 1988) .. 50
Figura 4-4. Modelo constitutivo del acero (Park 1991) ... 52
Figura 4-5. Fuerzas internas de la sección. .. 54
Figura 4-6. Ejemplo Diagrama Momento – Curvatura. .. 54
Figura 4-7. Distribución de curvaturas a lo largo de la altura del muro, adaptada de [7]. 55
Figura 4-8. Representación bilineal (Curva de capacidad). .. 57
Figura 4-10. Grafica Momento-Curvatura con cuantía variable. .. 59
Figura 4-11. Grafica Momento-Curvatura con espesor variable. 61
Figura 4-12. Grafica Momento-Curvatura con longitud variable. .. 62
Figura 4-13. Grafica Momento-Curvatura con f’s variable. .. 64
Figura 4-14. Grafica Momento-Curvatura con f’s variable. .. 65
Figura 4-15. Grafica Momento-Curvatura con carga axial variable. 66
Figura 4-16. Sección transversal (Ejemplo de aplicación). .. 67
Figura 4-17. Diagrama Momento – Curvatura (Ejemplo de aplicación). 68
Figura 4-18. Curva de Capacidad (Ejemplo de aplicación). .. 69
Figura 5-1. Geometría y detallado de los muros, adaptada de [2] .. 72
Figura 5-3. Curva Histerética – Muro 1, adaptada de [2] ... 76
Figura 5-6. Sección transversal de los muros 4, 5, 6, 7, 8 y 9, adaptada de [3] 79
Figura 5-7. Curva Histerética – Muro 4, adaptada de [3]................................. 82
Figura 5-8. Curva Histerética – Muro 5, adaptada de [3]................................. 82
Figura 5-9. Curva Histerética – Muro 6, adaptada de [3]................................. 82
Figura 5-10. Curva Histerética – Muro 7, adaptada de [3]............................... 82
Figura 5-11. Curva Histerética – Muro 8, adaptada de [3]............................... 83
Figura 5-12. Curva Histerética – Muro 9, adaptada de [3]............................... 83
Figura 5-13. Relación Momento – Curvatura del Muro 9 usando un modelo de fibras en comparación con los resultados experimentales, adaptada de [3]...................... 85
Figura 5-14. Geometría y detallado de los muros, adaptada de [4].................. 87
Figura 5-15. Sección transversal de los muros WSH1, WSH2, WSH3, WSH4, WSH5 y WSH6, adaptada de [4]... 88
Figura 5-16. Curva Histerética – Muro WSH1, adaptada de [4]........................ 92
Figura 5-17. Curva Histerética – Muro WSH2, adaptada de [4]........................ 92
Figura 5-18. Curva Histerética – Muro WSH3, adaptada de [4]........................ 92
Figura 5-19. Curva Histerética – Muro WSH4, adaptada de [4]........................ 92
Figura 5-20. Curva Histerética – Muro WSH5, adaptada de [4]........................ 93
Figura 5-21. Curva Histerética – Muro WSH4, adaptada de [4]........................ 93
Figura 5-22. Detallado y configuración geométrica del primer grupo de muros ensayado, adaptada de [5]... 97
Figura 5-23. Secciones transversales tipo a, b y c, adaptada de [5].................. 98
Figura 5-24. Detallado y configuración geométrica del segundo grupo de muros, adaptada de [5]... 98
Figura 5-25. Secciones transversales tipo d, e, f y g, adaptada de [5]................. 99
Figura 5-26. Configuración de los ensayos, adaptada de [5]............................. 100
Figura 5-27. Curva Histerética – Muros B16R8-1 y B16R8-2, adaptada de [5].... 102
Figura 5-28. Curva Histerética – Muros B14HR8-1, B14HR8-2, B14CD8-1 y B14CD8-2, adaptada de [5]... 103

Figura 5-29. Curva Histerética – Muros HR12C-1, HR12C-2, CD12C-1 y CD12C-2, adaptada de [5]... 104

Figura 5-30. Curva Histerética – Muros B14HR8S, B14HR8U, B14CD8S y B14CD8U, adaptada de [5]... 107

Figura 6-1. Comparación de la curva de capacidad con diferentes longitudes de plastificación... 113

Figura 6-2. Influencia el espesor tw en la respuesta del elemento.. 114

Figura 6-3. Comparación entre diagramas Momento – Curvatura teóricos y experimentales (Muro 2). ... 114

Figura 6-4. Comparación entre diagramas Momento – Curvatura teóricos y experimentales con εuc=0.02 (Muro 2). ... 116

Figura 6-5. Registro de deformaciones unitarias, adaptada de [3].. 117

Figura 6-6. Comparación entre curvas de capacidad teóricas y experimental (Muro 1). 118

Figura 6-7. Comparación entre curvas de capacidad teóricas y experimental (Muro 2). 118

Figura 6-8. Comparación entre curvas de capacidad teóricas y experimental (Muro 3). 119

Figura 6-9. Comparación entre curvas de capacidad teóricas y experimental (Muro 4). 119

Figura 6-10. Comparación entre curvas de capacidad teóricas y experimental (Muro 5). ... 120
LISTA DE TABLAS

Tabla 3-1. Propiedades geométricas y mecánicas del muro ensayado, adaptado de [6]. 35
Tabla 3-2. Valores experimentales y analíticos de ancho mínimo y deformación máxima, adaptado de [6]... 36
Tabla 3-3. Niveles de desempeño para un muro de concreto reforzado, adaptado de [7].37
Tabla 3-4. Propiedades geométricas y condiciones de carga de los muros ensayados, adaptado de [8].. 41
Tabla 3-5. Propiedades mecánicas de los muros ensayados, adaptado de [8] 41
Tabla 3-6. Resultados experimentales, adaptado de [8] .. 42
Tabla 3-7. Propiedades y características de los muros, adaptado de [9]..................... 44
Tabla 4-1. Parámetros para el cálculo de Δy, adaptada de [7]. 56
Tabla 4-2. Valores de Momento-Curvatura para una cuantía variable. 59
Tabla 4-3. Valores de Momento-Curvatura para un espesor variable. 60
Tabla 4-4. Valores de Momento-Curvatura para una longitud variable 62
Tabla 4-5. Valores de Momento-Curvatura para un f_c variable. 64
Tabla 4-6. Valores de Momento-Curvatura para un f_c variable. 64
Tabla 4-7. Valores de Momento-Curvatura para un nivel de carga axial variable 66
Tabla 4-8. Características principales (Ejemplo de aplicación). 67
Tabla 5-1. Tabla de características de los muros ensayados.. 72
Tabla 5-2. Propiedades del acero de refuerzo. ... 73
Tabla 5-3. Tabla de características de los muros ensayados.. 78
Tabla 5-4. Propiedades del acero de refuerzo. ... 80
Tabla 5-5. Tabla de características de los muros ensayados.. 87
Tabla 5-6. Características del concreto ... 89
Tabla 5-7. Características de acero de refuerzo WSH1 .. 89
Tabla 5-8. Características de acero de refuerzo WSH2 .. 89
Tabla 5-9. Características de acero de refuerzo WSH3 .. 89
Tabla 5-10. Características de acero de refuerzo WSH4, WHS5 y WSH6 90
Tabla 5-11. Fuerzas cortantes y momentos flectores máximos experimentales......... 95
Tabla 5-12. Características de los especímenes ensayados 97
Tabla 5-13. Características del acero de refuerzo .. 99
Tabla 5-14. Derivas y fuerza cortante máxima ... 105
Tabla 5-15. Derivas y fuerza cortante máxima ... 109
Tabla 6-1. Parámetros de los muros seleccionados .. 112
Tabla 6-2. Resultados teóricos ... 121
Tabla 6-3. Resultados experimentales ... 121
Tabla 6-4. Comparación entre resultados teóricos y experimentales 121
1 INTRODUCCIÓN

El sistema de muros vaciados permite industrializar la construcción de edificios con gran cantidad de unidades inmobiliarias, de forma repetitiva y costos realmente competitivos con relación a la oferta del mercado, esto debido a que es una opción de diseño eficiente con sistemas ágiles de construcción que a su vez presentan una alta demanda. Básicamente es un sistema de muros portantes tanto para solicitaciones de cargas gravitacionales como para cargas sísmica y se compone por dos elementos: los muros y las losas de entrepiso que se apoyan en ellos.

Este sistema en comparación con las estructuras aporticadas, permite obtener una mayor resistencia frente acciones sísmicas y rigidez lateral. Sin embargo el sistema de muros vaciados en concreto carece de flexibilidad en cuanto a futuras reformas, debido a que la gran mayoría de los muros son estructurales.

Su uso es ampliamente recomendado en zonas de elevado riesgo sísmico, ya que disminuye considerablemente las derivas de piso, las vibraciones y oscilaciones, siendo esto de gran ayuda a la hora de disminuir los daños a los elementos estructurales y no estructurales. Por otra parte dichos muros presenta muy poca rigidez para cargas normales a ellos, sin embargo también se encuentra con una gran rigidez en su plano, con base en esto, se recomienda distribuir los muros de manera uniforme en la planta, para que existan líneas de rigidez similares en direcciones ortogonales.

Los métodos simplificados para el análisis de muros esbeltos de concreto reforzado, cobran gran importancia a la hora de evaluar con relativa agilidad tanto el comportamiento estructural como las propiedades intrínsecas del mismo, ya que en la práctica y el ejercicio profesional, los diseños convencionales se hacen con base en un análisis estático lineal donde el diseñador desconoce el comportamiento no lineal de estos elementos (capacidad última del muro, zona plástica del elemento, desplazamiento último, entre otros). Además dichos métodos contemplan el aporte tanto del concreto como del acero de manera conjunta con el fin de obtener con mayor certeza parámetros como la rigidez, desplazamientos, derivas, entre otros. Debido a esto se es posible tener un mayor control sobre cada uno de los elementos estructurales y su comportamiento real frente a las diferentes solicitudes.
1.1 Motivación

El diseño y construcción de edificios en muros esbeltos de concreto reforzado presentan en la actualidad una alta demanda, debido a su eficiente sistema constructivo y grandes ventajas en cuanto al desempeño sismo resistente de la edificación. Sin embargo, en países tales como Colombia y Ecuador, se han promovido prácticas constructivas que tienden a reducir considerablemente estos espesores, llegando incluso a niveles excesivos en los cuáles hay poco o ninguna evidencia experimental o numérica sobre el comportamiento real de este tipo de muros ante movimientos sísmicos moderados y severos. Con base en esto nace la necesidad de entender e interpretar de manera adecuada el comportamiento estructural de los muros esbeltos de concreto reforzado. Es necesario aclarar que el diseño convencional de dichos elementos no contempla un rango plástico, es decir, el diseñador no detalla sus cálculos teniendo en cuenta el comportamiento inelástico del elemento. Debido a esto no se tiene certeza del comportamiento del muro una vez sobrepasado los esfuerzos de fluencia, lo cual se hace necesario ya que dicho elemento cuenta con un rango de ductilidad que influye directamente en el desempeño estructural del mismo.

Basado en lo anterior es importante conocer el comportamiento tanto elástico como inelástico de los muros esbeltos de concreto reforzado, así mismo de cada uno de los parámetros geométricos, características de los materiales y solicitudes en el elemento. Es importante destacar que con los métodos simplificados de análisis estructural que consideren el rango no lineal es posible tener conocimiento del comportamiento de cada una de las variables mencionadas anteriormente, logrando así una concepción del diseño de estos elementos más adecuada y acorde a todos los parámetros que lo componen.

La presente tesis se realiza motivada en plantear una metodología simplificada para el análisis de muros esbeltos de concreto reforzado, que a su vez sea útil para entender de manera adecuada el comportamiento no lineal de estos elementos bajo la ocurrencia de diferentes solicitaciones.

1.2 El problema objeto de estudio

El análisis que se desarrolla a lo largo de la presente tesis es argumentado en las justificaciones que serán planteadas a continuación:
• Los métodos actuales de análisis y diseño estructural contemplados en la gran mayoría de los códigos no consideran el efecto del refuerzo sobre la rigidez de los elementos estructurales. El control del comportamiento en términos de desplazamiento o deriva, se hace única y exclusivamente con la geometría y posteriormente se determina el refuerzo requerido en términos de la demanda impuesta por el sismo de diseño. Lo anterior, no representa una condición real y es bien sabido que este tipo de superposición puede en algunos casos generar escenarios vulnerables desde el punto vista estructural.

• La elección de un factor de capacidad de disipación de energía que no involucra ningún tipo de análisis no lineal puede llevar a sub dimensionar la estructura y por lo tanto, generar un riesgo para la población y ocupantes. En esta metodología simplificada de análisis, posibilita calcular este factor de manera directa.

• Los métodos de análisis no lineal le permiten al ingeniero conocer el estado en que se encuentra la estructura para cada nivel de demanda, lo cual reduce las incertidumbres a la hora de que se genere una exposición real ante un evento sísmico.

Con base en las justificaciones previamente mencionadas, nacen interrogantes con respecto a la manera de cómo mejorar los aspectos en los cuales se encuentran deficiencias (análisis del comportamiento no lineal de sistemas de muros de concreto reforzado). A partir de lo anterior, se plantea el siguiente interrogante:

¿Es posible emplear métodos simplificados de análisis estructural que consideren el comportamiento no lineal de estructuras desarrolladas a partir del sistema de muros de concreto reforzado y que garanticen un buen desempeño sísmico?

1.3 Objetivos y alcance

El objetivo general consiste en calibrar métodos simplificados existentes para el análisis y el diseño de estructuras de muros de concreto reforzados, esto con el fin de generar unos criterios de diseño que permitan pre dimensionar las estructuras para garantizar el buen desempeño de este sistema ante eventos sísmicos de diferente magnitud y periodo de recurrencia.
A continuación se presentan los objetivos específicos:

- Calibrar métodos simplificados existentes para el análisis de muros esbeltos de concreto reforzados que me permitan evidenciar los comportamientos reales de las estructuras y las propiedades de ellas.

- Generar metodologías de análisis que permitan evidenciar el estado de la estructura para diferentes niveles de demanda.

- Realizar análisis paramétricos para los muros esbeltos de concreto reforzado, esto con el fin de generar sensibilidad de cuales variables impactan la capacidad de cada uno de los elementos estructurales.

- Evidenciar la secuencia de daños que sufre una estructura bajo los efectos de diferentes niveles de carga.

- Generar y corroborar parámetros estructurales por medio de análisis no lineales que permitan un diseño más confiable.

1.4 Estructura y contenido

Este informe está conformado por siete capítulos. En primera instancia se presenta un marco conceptual con algunos términos técnicos que serán útiles a lo largo de la presente tesis; la explicación de estos términos se hizo con base en la literatura internacional y diferentes artículos científicos. En la segunda etapa se presenta un estado del arte basado en cuatro diferentes artículos que facilitan poner en contexto la problemática que es expuesta en este documento.

Una vez estudiados algunos artículos del contexto internacional, se plantea una metodología simplificada de análisis para los muros en estudio, dicha metodología permite realizar una investigación del comportamiento no lineal de estos elementos, en la cual se varían los parámetros principales y se estudia la respuesta para cada caso.

El siguiente paso se enfoca en investigar artículos que presenten casos de estudio de muros esbeltos de concreto reforzado, los cuales sean útiles y comprables con la metodología
propuesta, para este caso se estudian cuatro artículos en los cuales dos de ellos hacen referencia al sismo de Chile del año 2010. Dichos casos presentan variabilidad en los parámetros principales que caracterizan estos elementos (geometría, detallamiento y nivel de carga axial), lo cual permite un análisis con mayor detalle, ya que cada uno de estos parámetros influye directamente en la respuesta del muro.

Se escogieron cinco muros estructurales expuestos en los casos de estudio mencionados anteriormente, con base en esto es posible determinar cuán aproximada es la metodología planteada y que tan factible es desarrollar a cabalidad cada uno de los objetivos proyectados.

Finalmente se concluye sobre los resultados obtenidos, los cuales se enfocan en el comportamiento no lineal de los muros esbeltos de concreto reforzado y la aplicabilidad de la metodología simplificada de análisis planteada en este informe.
2 MARCO CONCEPTUAL

A continuación se presenta una serie de términos técnicos y conceptos de los muros esbeltos de concreto reforzado que serán útiles para contextualizar los diferentes temas de análisis que se exponen a lo largo de la presente tesis. Cada una de estas definiciones se expone con base en literatura internacional y artículos científicos al respecto.

2.1 Parámetros geométricos

En la Figura 2-1 se muestran los principales parámetros geométricos que caracterizan un muro de concreto reforzado. Dichos elementos influyen considerablemente sobre la capacidad ante cargas laterales en términos de mecanismo de falla, resistencia y deformación. Lw: Longitud del muro, bw: ancho del muro, b: ancho del elemento de borde, bl: longitud del elemento de borde y Hw: Altura del muro.

Figura 2-1. Esquema con la geometría típica de un muro de hormigón reforzado, adaptada de [1].
2.1.1 Tipos de Muros – Forma

Aunque existen gran variedad de formas para los muros estructurales, usualmente se adoptan formas simétricas y simples, esto con fines estructurales y constructivos. Los muros en “L”, en “T”, en “C” y rectangulares son las formas más comunes que se encuentran en el medio; con base en esto la forma que tenga el muro está directamente relacionado con la distribución y detallamiento del refuerzo, lo cual hace de este un parámetro de suma importancia.

Las secciones en T son usualmente utilizadas en estructuras donde se requieran pasillos interiores. En dichos muros se emplea el alma como elemento divisorio y la aleta como elemento de fachada. Para este tipo de muros la orientación de la carga lateral determina la respuesta o capacidad de este, ya que es diferente si el acero de refuerzo se encuentra sometido a esfuerzos de compresión o de tracción (en tracción se desarrolla un mayor nivel de resistencia). Usualmente en la práctica local es común analizar esta tipología de muros como una superposición de dos muros rectangulares, sin embargo, esta suposición podría incurrir en errores importantes, los cuales no se presentarían si se asumirá la sección completa (sección en “T”).

Los tipos de muros con sección en “C” son usualmente empleados para estructuras donde sea necesario ductos para escaleras, fosos para ascensores, entre otros. Para generar elementos con esta forma, usualmente se emplean secciones enfrentadas, las cuales son conectadas por vigas de acople. Como se presentó en los muros con sección en “T”, la capacidad de estos elementos depende de la dirección de la carga lateral, ya que si esta se encuentra paralela al alma de la sección, podrían generarse efectos torsionales que tendrían que ser considerados en el diseño.

Los muros con sección rectangular, son empleados usualmente cuando son requeridos elementos de borde, lo cual es debido a los altos niveles de compresión y tensión que se concentra en dichas zonas, en algunos casos, no solo es necesario una concentración de refuerzo en los extremos si no un recrecimiento de la sección. Algunos códigos de diseño plantean recomendaciones con respecto a los elementos de borde, los cuales se incluyen o no dependiendo de los niveles de carga axial y la profundidad del eje neutro.
2.1.2 Tipos de Muros - Elevación

Los muros estructurales se dividen básicamente en tres tipologías: muros en voladizo, muros acoplados y muros con aberturas. Los muros en voladizo se pueden representar con modelos simples de buena precisión. Para dicha tipología, el comportamiento no lineal se concentra en una zona cercana a la base (esta zona es delimitada por la longitud de plastificación). A partir de esta zona el muro tiene un comportamiento elástico.

Los muros con aberturas presentan unos elementos denominados en inglés como “piers”, los cuales constituyen franjas verticales del muro que están entre las aberturas y las cuales son mucho más pequeñas que las franjas horizontales que existen entre abertura y abertura. Para los casos donde se presenten eventos sísmicos, las deformaciones inelásticas se concentraran en los “Piers” de los primeros niveles, lo cual generaría fallas frágiles en el sistema estructural. Por este motivo dicha tipología de muro no debe ser utilizado en zonas donde la amenaza sísmica esté comprendida entre media y alta.

Por último los muros de acople son diseñados para que las rótulas plásticas se formen en la zona inferior del muro y los elementos de acople, permitiendo así generar un mecanismo eficiente para atender las demanda sísmica controlando los niveles de desplazamiento.

Este trabajo, se enfoca en el análisis de muros que pueden considerarse como elementos en voladizo.

2.1.3 Espesor del muro (b_w) y la relación de aspecto ($A_r = H_w/L_w$)

Una de las principales características geométricas para los muros estructurales es el espesor, ya que la estabilidad ante carga lateral y vertical depende de dicho parámetro. Cuando un muro es sometido a una demanda de ductilidad alta, se presentan grandes deformaciones causas por esfuerzo de tracción en las zonas de plastificación, las cuales pueden afectar la estabilidad del muro dependiendo de su magnitud. Con base en esto, se requiere un espesor mínimo de muro que garantice que no se presente una falla por pandeo fuera del plano a causa de esfuerzos de compresión.

Paulay y Priestley (1992) plantearon expresiones para estimar el espesor mínimo b_w como función de la ductilidad de curvatura en un muro con altura H_w y longitud L_w tal y como se expresa en las ecuaciones 1 y 2. Al incluir suposiciones sobre la longitud de rótula plástica
es posible definir el espesor crítico de un muro en función de la ductilidad de desplazamiento a partir de las ecuaciones 1 y 2. La Figura 2-2 ilustra este espesor crítico a partir del cual un muro de concreto reforzado puede presentar problemas de estabilidad fuera del plano.

\[
b_w = 0.017l_w \sqrt{\mu} \quad \beta = 0.8 \quad (1)\\
b_w = 0.022l_w \sqrt{\mu} \quad \beta = 0.5 \quad (2)
\]

Figura 2-2. Espesor crítico de muro para control de pandeo fuera del plano, adaptada de [6].

Algunos códigos de diseño también sugieren valores mínimos para el espesor del muro. El Uniform Building Code requiere que el muro tenga un espesor mayor o igual a 1/16 de la altura libre de piso. El código de Nueva Zelanda define el espesor en función del nivel de demanda de ductilidad, la relación de aspecto, la cuantía de refuerzo y la resistencia de los materiales, como se indica en la ecuación 3, donde \(\mu_d \) es la ductilidad por desplazamiento, \(Ar \) es la relación de aspecto, \(Lw \) la longitud del muro, \(Ln \) la altura libre entre piso, \(f_y \) la resistencia a la fluencia del acero, \(f'_c \) es la resistencia a la compresión del hormigón y \(\rho_l \) es la cuantía de refuerzo longitudinal:
\[b_w = \frac{k_m(\mu_\Delta + 2)(A_r + 2)L_w}{1700 \sqrt{\xi}} \] \hspace{1cm} (3)

\[k_m = \frac{L_m}{(0.25 + 0.055 A_r)L_w} \] \hspace{1cm} (4)

\[\xi = 0.3 - \frac{\rho f_y}{2.5 f_c} \geq 0.1 \] \hspace{1cm} (5)

2.2 Parámetros mecánicos

2.2.1 Elementos de borde y confinamiento

En muros de hormigón es de gran importancia el uso de elementos de borde ya que proporcionan confinamiento a la sección cuando se estiman grandes deformaciones que pueden llevar a la falla del muro en esta zona. Dichos elementos pueden llegar a ser del mismo espesor del muro, sin embargo su espesor y longitud son función del área necesaria para que no se genere pandeo fuera del plano, por lo que pueden llegar a tener un ancho mayor al del alma del muro tal como se ilustra en la Figura 2-3. Con el uso de los elementos de borde, el espesor del muro puede llegar a ser incluso menor al ancho crítico de la sección bc. Por medio de la ecuación 6 es posible calcular el valor mínimo y máximo del área necesaria de un elemento de borde.

Según el Reglamento Colombiano de Construcción Sismo Resistente NSR-10 y el Instituto Americano del Concreto ACI-318 los elementos de borde en muros de hormigón reforzado son necesarios cuando los esfuerzos en los extremos del elemento obtenidos a partir de un análisis elástico sobrepasen 0.2 f´c o 0.3 f´c dependiendo del nivel de disipación de energía de la estructura. Una alternativa más precisa y detallada a este procedimiento se define por la ecuación 7 con la cual es posible estimar la profundidad del eje neutro (c) de un elemento sometido a flexo compresión a partir de la longitud (Lw), desplazamiento lateral de diseño y la altura del muro (hw). Para los casos en que el eje neutro sea mayor a dicho número es necesario colocar elementos de borde los cuales deben extenderse verticalmente hasta el punto donde los esfuerzos sean menores a 0.15 f´c o una distancia mayor a Lw o Mu/4Vu donde Mu y Vu son el momento y cortante últimos estimados para el
elemento que se está diseñando. Horizontalmente el elemento debe extenderse hasta \(c/2 \) o \(c-0.1Lw \) (Bonett y Blandon, 2014).

\[
bc^2 \leq A_{wb} \geq \frac{b_c l_w}{10} \quad (6)
\]

\[
b \geq b_w \quad b_f \geq \frac{b_c l_w}{10b}
\]

\[
b \geq b_c \quad b_f \geq \frac{b_c^2}{b}
\]

\[
b \geq h_f \quad b_f \geq \frac{h_f}{16}
\]

Figura 2-3. Elementos de borde y dimensiones mínimas.

\[
c \geq \frac{l_w}{600 \left(\frac{\delta_u}{h_w}\right)} \quad (7)
\]

Por otro lado actualmente es posible hallar diferentes estudios que demuestren el efecto de incremento en la resistencia y ductilidad a causa del confinamiento que se genera gracias a la colocación del refuerzo transversal en los elementos de concreto reforzado (Mander et al, 1988). La Figura 2-4 muestra como dentro de una sección hay un núcleo de concreto que se encuentra confinado debido a los estribos (zona no sombreada) mientras hay otra parte del concreto que no recibe la influencia del refuerzo transversal (zona sombreada). El incremento en la resistencia y la capacidad de deformación puede verse en resultados experimentales como lo que se ilustran en la Figura 2-5. Es evidente que un buen
El confinamiento favorece un mecanismo de falla dúctil, lo cual permite el cumplimiento de los objetivos de diseño.

Es importante garantizar que el hormigón se encuentra debidamente confinado, para esto es necesario que el refuerzo transversal sea capaz de resistir los esfuerzos laterales que genera el concreto confinado en el núcleo del elemento; para poder obtener este propósito los estribos deben de estar anclados al refuerzo longitudinal por ganchos con un doblez mayor a 135°, de otra forma se puede perder el efecto de confinamiento cuando a causa de los esfuerzos de aplastamiento el recubrimiento de la sección se descascara dejando dicho refuerzo transversal descubierto a la intemperie (este fenómeno se analiza en el capítulo 4 de la presente tesis).

![Figura 2-4. Refuerzo transversal y zonas del concreto confinado y no confinado (FEMA 451, 2006).](image)

![Figura 2-5. Efectos del confinamiento del concreto (FEMA 451, 2006).](image)
2.2.2 Relación de carga axial (ALR)

Este parámetro relaciona la carga axial a la cual es sometido el elemento y la carga axial máxima que podría resistir el concreto del cual está hecho, esta última se calcula con base a la sección transversal del mismo y su respectivo $f'c$ tal y como se muestra en la ecuación 8. Si el nivel de carga axial es alto, el muro podría presentar fallas por aplastamiento del concreto o pandeo fuera del plano, no obstante dicho patrón de fallas puede ser controlado en el diseño de la estructura con un adecuado detallamiento, ya que el nivel de carga axial contribuye a su vez con la capacidad a fuerzas laterales del elemento. Se considera una buena práctica ingenieril, garantizar que este parámetro no exceda en gran proporción un valor de 0.2. Se ha demostrado experimentalmente que con altos niveles de carga axial el muro adquiere mayor capacidad, no obstante decrece su ductilidad lo cual podría ocasionar una falla tipo frágil, totalmente indeseable para un comportamiento estructural. Por otra parte para niveles de carga axial bajos la capacidad estructural se disminuye pero la ductilidad aumenta, teniendo en cuenta que cada uno de estos escenarios depende del diagrama de interacción de su respectivo elemento. Este comportamiento será analizado en el análisis paramétrico planteado en el capítulo 4.

$$ALR = \frac{N}{A \times f'c} \quad (8)$$

2.2.3 Relación Momento – Curvatura

Es importante tener conocimiento de la relación Momento – Curvatura para las secciones de los elementos estructurales, con el fin de conocer la ductilidad por curvatura μ_ψ, la capacidad máxima a flexión M_u y a si comparar dichos valores con las demandas que se tienen debidas al diseño.

Dado el caso que un elemento tenga poca capacidad de ductilidad por curvatura, esto representara una falla frágil cuando la estructura ingrese al rango no lineal, la cual es totalmente indeseada. La condición ideal es que dicho elemento desarrolle un valor alto de μ_ψ (ductilidad por curvatura), para garantizar que la estructura posea una apropiada disipación de energía, con el fin de lograr redistribuciones de momentos y un adecuado comportamiento estructural.
La relación Momento – Curvatura es el insumo principal para el análisis estático no lineal. Para generar el diagrama que presenta dicha relación, es necesario plantear los modelos constitutivos que se utilizan para determinar la relación esfuerzo - deformación del hormigón y del acero.

Como se puede observar en la Figura 2-6 dicha relación logra representar el comportamiento no lineal de un elemento estructural, con base en ella es posible desarrollar metodologías que expresen la curva capacidad del elemento tanto en el rango elástico como en el plástico. En el capítulo 4 se describe con detenimiento el paso a paso para construir la relación Momento – Curvatura para una sección de un elemento estructural y su relación con la curva de capacidad de la estructura.

![Diagrama Momento – Curvatura y sus respectivos estados](http://www.scielo.org.mx/)

2.3 Parámetros para el desempeño.

2.3.1 Deriva entre piso

Dicho término se obtiene de la diferencia entre los desplazamientos respectivos de dos pisos consecutivos, siendo ésta dividida por la altura entre ellos. La deriva de piso expresa
la deformación de forma relativa que experimenta un piso en particular, esto debido a la acción de fuerzas horizontales como lo pueden ser sismo o viento (Ver Figura 2-7). La normativa indica que para el caso de pórticos de concreto o de acero, la deriva que garantiza el buen funcionamiento de la estructura es del 1%, sin embargo la estructura podría llegar alcanzar valores más altos de deriva sin sufrir un daño representativo, claro está que el argumento que sustenta este tipo de afirmaciones está apoyado en análisis de comportamiento estructural mucho más avanzado que los habituales, ya que dichas metodologías no reflejan realmente el aporte a la rigidez de los materiales en conjunto. Por otra parte la deriva es un criterio fundamental ya que establece el límite que protege a los elementos no estructurales frágiles que se verían muy afectados en un sismo, si dicha estructura es muy flexible.

Figura 2-7. Deriva de total de la edificación.

2.3.2 Rigidez

La rigidez estructural se refiere a una medida cualitativa de la resistencia a deformaciones producidas en los elementos de la edificación, debido a que contempla la capacidad que tiene la estructura para soportar esfuerzos sin adquirir grandes deformaciones (Ver la Figura 2-8). Dicho parámetro se expresa como una magnitud física que cuantifica la rigidez de una estructura resistente bajo diversas configuraciones de cargas. Normalmente se calcula como la razón entre la fuerza y el desplazamiento asociado a la aplicación de ella.
Es importante destacar que para los muros de concreto reforzado es analizada tanto la rigidez a flexión como la rigidez cortante. Estas son relevantes ya que determinan la respuesta del muro debido a cargas horizontales como lo puede ser un evento sísmico o fuerzas de viento. Cada una de estas rigideces depende principalmente de las propiedades geométricas del muro, las propiedades mecánicas de los materiales que lo componen y el detallado del acero de refuerzo que este contiene. En el diseño estos parámetros son de gran importancia, debido a que gracias a ellos se controlan los desplazamientos excesivos, se plantea la distribución geométrica de los muros en una estructura y se analiza el comportamiento estructural de la edificación y puntual del elemento (muro).

2.3.3 Ductilidad

La deformación en el rango plástico sin reducción sustancial de la resistencia es la principal manifestación de ductilidad para una estructura. En estructuras de concreto reforzado puede observarse que el material más dúctil es el acero, por ello debe procurarse que de ninguna manera el concreto falle, ya que produciría una falla frágil, por el contrario si fallase el acero sería una falla dúctil. Con base en lo anterior es indispensable tener en cuenta que el confinamiento del concreto juega un papel muy importante para aumentar la ductilidad en general de la estructura, debido a ello es normal encontrar cuantioso acero de
confinamiento en columnas y elementos de borde para muros de concreto reforzado (Ver la Figura 2-9).

En el análisis de estos elementos existen diversas formas de expresar la ductilidad y cada una de ellas depende de diferentes parámetros, como lo son la rotación, el desplazamiento y la curvatura, por su parte cada uno de estos parámetros es útil para analizar la ductilidad desde los diferentes fenómenos presentes. Independientemente del parámetro analizado, dicha ductilidad se calcula como la relación entre la respuesta última y la respuesta de fluencia en el elemento analizado y está según sea su magnitud expresará la ductilidad intrínseca del mismo. En el diseño se busca que esta magnitud alcance valores altos, lo cual evidencia que el elemento podrá deformarse mucho sin que esto vaya en detrimento de su capacidad y a su vez desde un punto de vista más global, la edificación pueda desarrollar una redistribución de esfuerzos en los elementos que la componen.

Figura 2-9. Comparación entre material frágil y dúctil.

2.3.4 Rótula Plástica

Este suceso toma lugar cuando todas las fibras de un elemento estructural alcanzan su estado plástico al producirse una articulación en la sección transversal del mismo. Cuando esto sucede, ocurre una redistribución de esfuerzo a los elementos que no han llegado aún
a su estado plástico, sin embargo cabe resaltar que una vez formada la rótula plástica, ésta será permanente, debido a que los materiales que la componen sufrieron la plastificación y ya no es posible contemplar un estado elástico. En muros de concreto reforzado es muy usual utilizar la longitud de plastificación, debido a que esta indica la distancia en el muro equivalente a la articulación plástica.

2.3.5 Longitud de plastificación

La longitud de plastificación se le atribuye a la zona del elemento que está sometida a flexión, la cual es equivalente a la articulación o rótula plástica. En dicha zona todas las fibras del elemento estructural se encuentran en un estado plástico. Usualmente esta longitud es medida cerca de los apoyos del elemento, ya que en estos sectores de la estructura ocurre una concentración de esfuerzos. Varias de las expresiones presentadas en este trabajo dependen de este parámetro, ya que la longitud plástica influye en la respuesta de la estructura para el rango inelástico de ésta. En la literatura internacional se identifican varios métodos para determinar este parámetro. A continuación se presentan algunos de los métodos mencionados:

- **Método de Paulay:** Este método se basa en propiedades geométricas del muro donde \(L_w \) (longitud del muro) y \(h_w \) (altura del muro) son las variables principales (Paulay y Priestley, 1992).

\[
L_p = 0.2 L_w + 0.044 h_w \quad (9)
\]

- **Método de Priestley:** Este método se basa en propiedades geométricas del muro y mecánicas de acero de refuerzo donde \(L \) (altura del muro), \(f_y \) (esfuerzo de fluencia del acero) y \(d_{bl} \) (diámetro de la barra longitudinal mayor en el elemento de borde) son las variables principales (Priestley et al. 1996).

\[
L_p = 0.08L + 0.15f_y d_{bl} \quad (10)
\]
• Método de Fardis: Este método es similar al propuesto por Priestley pero con algunos ajustes a los coeficientes que acompañan las variables de la ecuación. En este caso hw es la altura del muro \((Panagiotakos y Fardis, 2001)\).

\[
L_p = 0.12h_w + 0.014f_yd_{bl} \quad (11)
\]

• Método de Kowalsky: Este método particularmente solo depende de la longitud del muro \(L_w\) \((Kowalsky, 2001)\).

\[
L_p = 0.5L_w \quad (12)
\]

• Método de Wallace: Este método es similar al propuesto por Kowalsky pero con algunos ajustes en el coeficiente que acompaña la variable de la ecuación \(Wallace et al. 2004\).

\[
L_p = 0.33L_w \quad (13)
\]

• Método de Sawyer: Este método es similar al planteado por Paulay pero con algunas modificaciones a los parámetros que acompañan las variables de la ecuación. En este caso Lw es la longitud del muro y hw la altura del muro \(Sawyer, H.A 1964\).

\[
L_p = 0.4L_w + 0.1h_w \quad (14)
\]

• Método de Sasani y Der Kiureghian: Este método se base en propiedades geométricas del muro y en las solicitaciones que inciden él. La variable d es la profundidad efectiva a flexión, M es el momento flector y V el cortante en la base del elemento \(z = M/V\) \(Sasani y Der Kiureghian, 2001\).

\[
L_p = 0.43d + 0.077\sqrt{z/d} \quad (15)
\]
Método de Bohl: Este método se basa en propiedades geométricas del muro, propiedades mecánicas del concreto y en las solicitudes que inciden en el elemento. En este caso Lw es la longitud del muro, Ag el área global del elemento, P la carga axial, f'c el esfuerzo a compresión máximo del concreto, M el momento actuante y V el cortante en la base del muro (Bohl y Adebar, 2011).

\[L_p = \left(0.2L_w + 0.05 \frac{M}{V} \right) \left(1 - 1.5 \frac{P}{f'_c A_g} \right) 0.8L_w \quad (16) \]

En la Figura 2-10 se presenta un modelo de muro en voladizo, donde se representa la longitud de plastificación como Lp, la cual se ubica cerca a la base del muro estructural.

![Figura 2-10. Modelo de muro en voladizo, adaptado de [10].](image)

2.4 Estabilidad y mecanismos de falla

2.4.1 Estabilidad

La estabilidad de un muro ante carga lateral y vertical depende en gran medida de su espesor. Cuando parte de la sección de un muro se encuentra sometida a esfuerzos de compresión, la posibilidad de que se genere pandeo fuera del plano incrementa
considerablemente. Por lo tanto, para evitar dicho problema inicialmente los diferentes códigos de ingeniería como es el caso de Nueva Zelanda limitaban el espesor de un muro en voladizo, como mínimo a una décima parte de la altura de este, con el fin de evitar la formación de rotulas plásticas en la base del muro. Sin embargo estudios mucho más recientes revelaron que la formación potencial de pandeo fuera de plano en muros esbeltos depende en una medida mucho más importante de: la cuantía longitudinal, las deformaciones inelásticas tanto a compresión como a tensión, la geometría del muro y la relación de aspecto. En la Figura 2-11 se presenta la configuración típica de un muro estructural y su posible zona de pandeo fuera del plano, donde Ln es la altura libre del muro, Lo la longitud de la zona de pandeo, Lw la longitud del muro, bw el espesor del muro y b el espesor de los elementos de borde.

Figura 2-11. Configuración típica de un muro estructural, adaptado de [6].

2.4.2 Pandeo fuera del plano

El pandeo o el desplazamiento (δ) fuera del plano dependen principalmente de dos aspectos, uno de ellos es el ancho de la grieta, que se forma en la zona de la rótula plástica debido a la carga cíclica que produce un sismo. El espesor de la grieta dependerá a su vez de la máxima deformación residual a tracción impuesta a las barras longitudinales también a causa de la carga cíclica. El segundo aspecto es la disposición del refuerzo longitudinal del muro, es decir, cuantía, número de capas, entre otros. Es importante resaltar que los muros esbeltos de concreto reforzado son susceptibles al pandeo fuera del plano; esto no solo se le atribuye a espesores reducidos o a relaciones de aspecto altas sino también al detallado de refuerzo, el cual típicamente solo se constituye es una sola capa de refuerzo.
3 REVISIÓN DE LA LITERATURA

A partir de una extensa base de datos, se seleccionaron cuatro artículos, los cuales incluyen los principales conceptos sobre el comportamiento a flexión de muros esbeltos de concreto reforzado ante un evento sísmico. A continuación, se presenta una descripción general de cada trabajo y un análisis de los resultados obtenidos.

En este artículo los autores llevaron a cabo un trabajo analítico con la finalidad de poder comprender el comportamiento en las diferentes regiones en donde se generan zonas de alta plasticidad de los muros de concreto estructural, cuando son sometidos ante una carga cíclica, y de esa manera poder predecir diferentes parámetros de gran importancia como por ejemplo, la longitud de plastificación, el ancho mínimo o crítico de la sección, el porcentaje de deformación del acero, entre otros. Pues si bien en esa época los diferentes códigos existentes proveían una guía práctica para el diseño de muros estructurales no consideraban la inestabilidad que se generaban en las zonas inelásticas de los muros esbeltos debido al pandeo fuera del plano provocado por un evento sísmico, lo cual influye considerablemente en la estabilidad de una estructura. Durante el trabajo analítico desarrollado, los autores plantean diferentes parámetros, ecuaciones y ábacos los cuales nacen como la relación entre aspectos geométricos y aspectos mecánicos del muro, algunos de estos parámetros son: la relación de aspecto, relación de esbeltez, ductilidad por curvatura, entre otros.

Con base a estos parámetros es posible calcular de manera aproximada la longitud de plastificación (Lp) que se puede generar en la base del muro, dicha longitud influye considerablemente sobre la capacidad de rotación inelástica y por lo tanto, sobre la ductilidad del muro.

Para poder verificar la idoneidad del trabajo desarrollado en el que se proponen diferentes parámetros, ecuaciones y ábacos, durante el presente trabajo los investigadores llevaron a cabo un programa experimental con un muro esbelto sometido a cargas cíclicas, con el fin
de realizar posteriormente una comparación entre los resultados obtenidos (deformaciones unitarias, longitud de plastificación, ancho mínimo crítico, entre otros) tanto de manera analítica como de manera experimental.

El programa experimental tuvo como propósito evaluar los efectos de la relación de esbeltez y el confinamiento del muro en la zona donde se genera la compresión y flexión ante una carga cíclica. En la Tabla 3-1 se muestran las propiedades geométricas y mecánicas del muro ensayado. Para llevar a cabo este estudio se aplicaron fuerzas laterales cíclicas, también se varió la fuerza de compresión axial.

Tabla 3-1. Propiedades geométricas y mecánicas del muro ensayado, adaptado de [6].

<table>
<thead>
<tr>
<th>Lw (m)</th>
<th>Tw (m)</th>
<th>Hw (m)</th>
<th>Ar</th>
<th>Carga Axial (kN)</th>
<th>ARL (%)</th>
<th>f’c (MPa)</th>
<th>fy (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.1</td>
<td>4.5</td>
<td>3</td>
<td>375</td>
<td>10</td>
<td>25</td>
<td>450</td>
</tr>
</tbody>
</table>

Una vez conocidas las características geométricas y mecánicas del muro, los autores obtuvieron de manera analítica el ancho crítico o mínimo que demanda cada muro para un adecuado comportamiento estructural, para esto se requiere conocer la relación de aspecto del muro el cual posee una altura de 4.5 m, la cual al relacionarla con la longitud del muro se obtiene una relación de aspecto igual a 3, por lo tanto con base en las ecuaciones planteadas la longitud de plastificación (Lp) es igual a 500 mm. Una vez obtenido el valor de Lp es posible predecir el ancho mínimo o crítico del muro, para una relación de aspecto de 3 y una ductilidad por desplazamiento igual a 6 obteniendo un valor de ancho crítico (bc) igual 110 mm. Por otro lado, partiendo de los diferentes ábacos y ecuaciones planteados es posible calcular la deformación máxima del acero, por lo que para este caso la deformación máxima calculada de manera analítica tiene un valor de 2.9%.

Finalmente a partir de las características geométricas y mecánicas del muro se obtuvieron los valores de ancho crítico y máxima deformación. Una vez obtenidos estos valores los autores realizan una comparación con respecto a los valores experimentales y al acho (bw) utilizado; los resultados se encuentran en la Tabla 3-2.
Como se puede observar en la tabla anterior los valores hallados de manera analítica se encuentran muy cerca a los reales, lo cual le da una gran validez al trabajo realizado.

Por último los autores concluyen que durante este estudio fue posible el desarrollo de diferentes ecuaciones, ábacos y parámetros que de una manera analítica y partiendo de características básicas tanto geométricas como mecánicas, permite estimar el espesor mínimo requerido para evitar el pandeo fuera del plano que se genera en las zonas de alto potencial plástico en los muros, es decir en la base cuando estos se encuentran en voladizo. Además esta investigación indica que la generación de pandeo inelástico en un muro esbelto se encuentra más afectada por la longitud del muro que por la altura de esté y por la tensión residual que experimenta el acero de refuerzo ante una carga cíclica.

3.2 Diseño sísmico basado en el desplazamiento de fluencia para edificios de muros de concreto reforzado – “Yield displacement-based seismic design of RC wall buildings” (Tjhin et al, 2007).

En este artículo los autores presentan una metodología simple para el diseño sísmico de muros de concreto reforzado, basado en su ductilidad, este método se basa en una estimación del desplazamiento o deriva de techo. La fuerza basal requerida se determina con base a un sistema equivalente de un grado de libertad que representa el muro estructural. Los autores aclaran que los muros son diseñados para una fuerza cortante en la base y se deben establecer uno o más objetivos de desempeño, donde cada nivel de desempeño se exprese en términos de la deriva de techo y de la rotación en la rótula plástica que se genera en la base del muro. Durante la elaboración de la investigación un edificio de seis niveles se utilizó como ejemplo para ilustrar el método. Finalmente los análisis estáticos y dinámicos no lineales confirmaron la idoneidad de la metodología.
La metodología de diseño propuesta basada en el desempeño es un procedimiento que determina la fuerza cortante y momento requerido en la base de cada muro para poder realizar un adecuado diseño que permita cumplir con los objetivos o niveles de desempeño planteados inicialmente en términos de deriva de techo o rotaciones, estas fuerzas se obtienen con base en el primer modo con el fin de satisfacer diferentes objetivos los cuales se definen para cada movimiento sísmico de diseño considerado. Para un nivel de sismo seleccionado se expresan límites en la rotación de la rótula plástica y la deriva de techo para poder cumplir con cada objetivo del desempeño del muro. La rotación plástica se utiliza en este enfoque en lugar de la ductilidad del sistema ya que el comportamiento inelástico se basa en la deformación plástica debido a la flexión generada en la base de cada muro, los límites de la rotación plástica se encuentran tabulados en función del nivel de fuerza axial, del esfuerzo cortante, y la cantidad de refuerzo transversal. En la Tabla 3-3 se muestran dos niveles de diseño y los respectivos límites sobre los parámetros que controlan el comportamiento del elemento.

Tabla 3-3. Niveles de desempeño para un muro de concreto reforzado, adaptado de [7].

<table>
<thead>
<tr>
<th>Nivel de rendimiento de la estructura</th>
<th>Periodo de retorno del sismo (Años)</th>
<th>Rotación Plástica (Rad)</th>
<th>Deriva de Techo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocupación inmediata (IO)</td>
<td>73</td>
<td>0.002</td>
<td>0.5</td>
</tr>
<tr>
<td>Seguridad (LS)</td>
<td>475</td>
<td>0.004</td>
<td>1</td>
</tr>
<tr>
<td>Prevenencia de colapso (CP)</td>
<td>975</td>
<td>0.008</td>
<td>2</td>
</tr>
</tbody>
</table>

Para llevar a cabo correctamente la metodología propuesta, los autores proponen seis pasos fundamentales, los cuales se describen en el diagrama de flujo que se muestra en la Figura 3-1.

Primer paso: Establecer los límites de deriva máxima de techo y rotación plástica asociados con cada objetivo deseado, al mismo tiempo se establecen las dimensiones del muro y las propiedades mecánicas de los materiales que lo conformaran.
Segundo paso: Se procede en la estimación del desplazamiento de techo en el momento de la fluencia. Este valor se obtiene como el producto entre el coeficiente de desplazamiento de fluencia, la curvatura de fluencia y la altura del muro.

Tercer paso: Determinar el desplazamiento por ductilidad (demanda de ductilidad) para cada objetivo de diseño, éste se calcula como la relación entre el desplazamiento límite de techo y el desplazamiento de fluencia del muro.

Cuarto paso: Determinar el factor de participación (ψ_1) y el coeficiente de masa efectiva (α_1) los cuales se encuentran tabulados para diferentes números de pisos.

Quinto paso: Determinar para cada objetivo el mínimo coeficiente de fluencia (C_{y1}), suficiente para limitar la demanda de ductilidad determinada en el paso 3.

Sexto paso: Calcular el cortante basal requerido como $V_y = C_yW$, donde $C_y = \alpha_1 C_{y1}$, basados en el modo fundamental.

Figura 3-1. Pasos fundamentales para desarrollo de la metodología propuesta, adaptado de [7].
Para ejemplificar esta metodología, los autores diseñaron los muros estructurales de un edificio de seis pisos. Con una planta rectangular de 54.9 m x 30.5 m y una altura de entrepiso de 3.66 m (ver Figura 3-2).

El concreto utilizado tiene un $f'c$ de 34.5 MPa y el acero de refuerzo un $f'y$ de 414 MPa. Se asume que cada nivel tiene una carga muerta y viva de 8.4 kN/m² y 2.4kN/m², también se asume que los niveles de carga axial en la base de los muros W1 y W2 son 0.03 $f'c*tw*lw$ y 0.05 $f'c*tw*lw$ respectivamente, en el diseño se asume que solo la carga muerta contribuye como masa para el sismo; por otro lado el cortante en la base es distribuida en toda la altura del edificio siguiendo los parámetros establecidos en el IBC (2000).

Una vez establecidas las condiciones tanto geométricas del muro como las condiciones de carga, los autores proceden a llevar a cabo la metodología anteriormente descrita para finalmente obtener el cortante basal y el momento al que se encontraría sometido el muro los cuales son los valores de insumo para poder realizar el diseño tanto a cortante como a flexión de este. La metodología se desarrolla paso por paso para los muros tipo W1.

Posteriormente una vez desarrollados cada uno de los pasos descritos, es posible calcular el cortante en la base, el cual para este caso es igual a $V_y = 5130$ kN. Posteriormente para poder calcular el momento flector en la base, el cortante es distribuido verticalmente de acuerdo a lo estipulado en el IBC 2000; el periodo fundamental del edificio $T = 1.5$, y la
fuerza resultante es localizada a una distancia de $h_{eff} = 0.77(h_w)$ desde la base del muro, por lo que se obtiene un $M_y = 21400$ kN m y una carga axial $P = 1922$ kN.

Finalmente el diseño del muro se realiza en basa a los parámetros establecidos en el ACI para el nivel de carga y momento calculado, por lo tanto el diseño tanto a flexión como a cortante para el muro en estudio es el siguiente: para los elementos de borden el refuerzo longitudinal consta de 8 barras #9 con estribos #4 cada 6”, mientras que para el alma del muro el refuerzo longitudinal está compuesto por dos capaz de barras #5 cada 18” y el refuerzo transversal consta de barras #5 cada 12” (ver Figura 3-3).

Figura 3-3. Geometría y detallado del refuerzo del muro W1, adaptado de [7].

Por último para corroborar la metodología los autores realizan un análisis no lineal, del cual se obtienen valores muy similares de cortante, ductilidad, desplazamientos, entre otros; respaldando de esta manera la metodología planteada, por lo que los autores concluyen que se ha desarrollado una metodología válida para el diseño de muros estructurales que al mismo tiempo es muy sencilla y que será de gran utilidad.
3.3 Comportamiento sísmico de muros esbeltos de concreto reforzado sometidos a un alto nivel de carga axial – “Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio” (Su y Wong, 2006)

En el presente artículo los autores llevan a cabo un estudio, en el cual se puede identificar los efectos e importancia de la relación entre el nivel de carga axial (ALR) y el confinamiento para establecer un tipo determinado de falla, que se puede presentar en los muros de concreto reforzado cuando son sometidos a cargas cíclicas; para el desarrollo de la investigación se construyeron tres muros en voladizo con un concreto de alta resistencia y una relación de aspecto de cuatro (4). En la Tabla 3-4 y Tabla 3-5 se muestra la geometría y las propiedades mecánicas de estos muros.

Tabla 3-4. Propiedades geométricas y condiciones de carga de los muros ensayados, adaptado de [8].

<table>
<thead>
<tr>
<th>Muro</th>
<th>Lw (m)</th>
<th>tw (m)</th>
<th>Hw (m)</th>
<th>Carga Axial (kN)</th>
<th>ARL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>0.4</td>
<td>0.08</td>
<td>1.64</td>
<td>400</td>
<td>0.25</td>
</tr>
<tr>
<td>W2</td>
<td>0.4</td>
<td>0.08</td>
<td>1.64</td>
<td>668</td>
<td>0.5</td>
</tr>
<tr>
<td>W3</td>
<td>0.4</td>
<td>0.08</td>
<td>1.64</td>
<td>685</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tabla 3-5. Propiedades mecánicas de los muros ensayados, adaptado de [8].

<table>
<thead>
<tr>
<th>ρ longitudinal (%)</th>
<th>ρ transversal (%)</th>
<th>f´c (MPa)</th>
<th>fy R.Longitudinal (Mpa)</th>
<th>fy R.Transversal (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.96</td>
<td>0.54</td>
<td>58.8</td>
<td>412</td>
<td>260</td>
</tr>
<tr>
<td>1.96</td>
<td>0.54</td>
<td>50.9</td>
<td>412</td>
<td>260</td>
</tr>
<tr>
<td>1.96</td>
<td>1.08</td>
<td>49.6</td>
<td>412</td>
<td>260</td>
</tr>
</tbody>
</table>

Durante el estudio además de los aspectos mencionados anteriormente también se analizó la capacidad de ductilidad, la disipación de la energía, y la capacidad de carga axial. A través de esta investigación se identifica el nivel de carga axial ALR como un parámetro indispensable para la evaluación del desempeño sísmico de muros de hormigón armado.
Los muros del estudio fueron diseñados basados en las prácticas más comunes de la construcción de la región. Para examinar el efecto del confinamiento, en el espécimen W3 se aumentó la cuantía del refuerzo transversal en la zona donde se puede llegar a generar una rótula plástica.

En la Tabla 3-6 se muestran los valores de desplazamiento, rotación y curvatura de cada uno de los muros reportados durante la etapa experimental.

<table>
<thead>
<tr>
<th>Muro</th>
<th>Desplazamiento último (mm)</th>
<th>Rotación última (rad)</th>
<th>Curvatura última (rad/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>30.55</td>
<td>0.0219</td>
<td>0.092</td>
</tr>
<tr>
<td>W2</td>
<td>18.87</td>
<td>0.0137</td>
<td>0.049</td>
</tr>
<tr>
<td>W3</td>
<td>18.05</td>
<td>0.0130</td>
<td>0.052</td>
</tr>
</tbody>
</table>

De los resultados obtenidos se puede concluir que al aumentar un 100% el ALR disminuye aproximadamente un 37% las rotaciones y los demás aspectos (ductilidad y curvatura), con lo que se demuestra el impacto del ALR en el comportamiento de los muros de concreto reforzado cuando son sometidos a cargas sísmicas. Por otra parte es importante mencionar que un muro con un ALR alto, pierde capacidad de carga axial mucho más rápido en un evento sísmico que un muro con un bajo ALR, lo cual no es un comportamiento beneficioso para la estructura, ya que luego de ocurrido el sismo, si la estructura se encuentra en buenas condiciones el edificio será ocupado de nuevo y en nivel de carga axial al que estará sometido los muros seguramente será el mismo que tenía antes de ocurrido el evento, mientras que su capacidad ha disminuido.

Por otra parte al finalizar el experimento fue posible observar los diferentes tipos de fallas, donde los muros W2 y W3 presentaron patrones de falla totalmente distinto al del muro W1, puesto que el espécimen W1 experimento una falla por flexión desarrollando agrietamiento a una etapa temprana de la aplicación de la carga, dicho agrietamiento se propagó hacia el interior del elemento al mismo tiempo que el hormigón se descascaraba, lo que génera que el muro perdiera capacidad. Por otra parte los especímenes W2 y W3 los cuales estuvieron sometidos a un ALR mayor presentaron agrietamiento solo al final de la aplicación de la carga, ambos muros fallaron por pandeo fuera del plano.
Otro aspecto importante en estudio es el efecto del confinamiento en la respuesta de los muros, para ello se analizaron los especímenes W2 y W3 los cuales tenían un mismo nivel de ALR, pero con la diferencia que el muro W3 fue diseñado con el doble de cuantía de refuerzo transversal que los muros W1 y W2, por lo tanto se esperaba que el muro W3 tuviera la capacidad de soportar un momento mucho mayor al mismo tiempo que su comportamiento fuera mejor, sin embargo los máximos momento obtenidos en el muro W2 y W3 fueron 121.6 kN m y 125.59 kN m respectivamente, siendo muy similar no solo en capacidad sino en comportamiento; por lo que se concluyó que simplemente aumentar en un 100% la cuantía transversal del elemento sin generar al mismo tiempo un adecuado confinamiento no arroja los resultados esperados (aumento de la capacidad y mejor comportamiento).

Finalmente al termino de los experimentos los autores concluyen que el nivel de carga axial ALR tiene una influencia muy importante en la deformación, ductilidad y capacidad de los muros, en donde bajo un ALR la capacidad de carga aumenta, la capacidad de disipar energía disminuye; por otra parte encontraron que el confinamiento está altamente sujeto a la configuración del refuerzo transversal por lo que aumentar simplemente la cuantía no genera mejores resultados.

3.4 Diseño de muros estructurales esbeltos de concreto reforzado basado en desplazamiento - Verificación Experimental – “Displacement-based design of slender reinforced concrete structural wall- Experimental verification” (John H. Thomsen and John W. Wallace, 2004)

En este artículo los autores se proponen por medio del trabajo experimental verificar la validez del diseño basado por desplazamiento de muros esbeltos de hormigón armado, para tal propósito se diseñaron y construyeron a escala seis muros de hormigón, de los cuales tres tienen una sección transversal rectangular y dos en forma de “T” (ver Tabla 3-7). En el artículo se presentan y analizan los resultados de cuatro muros, de los cuales dos de ellos tienen forma de “T” (TW1 y TW2) y dos de sección rectangular (RW1 y RW2).
Los muros fueron diseñados con base en la planta típica de un edificio de oficinas ubicado en los ángeles, la cual es una área de alto nivel de amenaza sísmica, el edificio es de seis niveles para una altura total de 21,9 m, la planta está compuesta por muros estructuras rectangulares y en forma de “T”, además de pórticos espaciales resistentes a momentos (ver Figura 3-4). La escala utilizada para la elaboración de estos especímenes fue de 1:1/4.

Tabla 3-7. Propiedades y características de los muros, adaptado de [9].

<table>
<thead>
<tr>
<th>Muro</th>
<th>Lw (m)</th>
<th>aleta y/o alma (m)</th>
<th>Tw (m)</th>
<th>Hw (m)</th>
<th>f’c (MPa)</th>
<th>fy (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW1</td>
<td>1.22</td>
<td>0.1</td>
<td>3.66</td>
<td>27.4</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>RW2</td>
<td>1.22</td>
<td>0.1</td>
<td>3.66</td>
<td>27.4</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>TW1</td>
<td>1.22</td>
<td>0.1</td>
<td>3.66</td>
<td>27.4</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>TW2</td>
<td>1.22</td>
<td>0.1</td>
<td>3.66</td>
<td>27.4</td>
<td>414</td>
<td></td>
</tr>
</tbody>
</table>

Los muros fueron fallados en un marco especialmente diseñado para transferir cargas. Se utilizó un nivel de carga axial ALR igual a 0,10; por medio de un gato hidráulico colocado...
de manera horizontal se aplica la carga cíclica que simula el evento sísmico, la magnitud de dicha carga fue registrada por medio de una celda de carga, los muros fueron dotados de transductores, Líneas de desplazamiento (LVDT’s por sus siglas en inglés) con el fin de realizar las mediciones de desplazamiento.

A partir de los resultados obtenidos los autores realizan una comparación entre las predicciones realizadas de manera analítica y los valores experimentales. Inicialmente se observa que los muros tienen una respuesta inelástica concentrada en su base, es decir por debajo de 0,91 m, mientras el resto del muro se encuentra en un estado elástico. Los resultados indican que las deformaciones por cortante representan aproximadamente el 15% de la deformación lateral de los muros RW2 y TW2, lo cual es un resultado esperado por los autores ya que las deformaciones por cortante son menores que las causadas por flexión. Por otra parte uno de los aspectos más importantes en el diseño basado en desplazamiento, son los perfiles de deformación los cuales fueron elaborados analíticamente para tres niveles de desempeño, es decir derivas del 1%, 1,5% y 2%, estos perfiles fueron comparados con los perfiles elaborados a partir de los datos arrojados en el estudio. En la Figura 3-5 se observan los perfiles de deformación tanto analíticos como experimentales de los muros RW2 y TW2.
Como se puede observar en la figura anterior los perfiles de deformación del muro RW2 y TW2 es posible analizar que (zona de compresión) son de gran similitud, mientras que los perfiles del muro TW2 (zona de tensión) posee una desviación importante la cual es atribuida al impacto del agrietamiento del concreto además de la interacción entre el acero y el hormigón, sin embargo esta desviación tiene un impacto mínimo en el cálculo de la profundidad del eje neutro.

Finalmente los autores concluyen que asumir una longitud adecuada de la rótula plástica tiene un gran impacto en la relación entre los perfiles de deformación realizados de manera analítica y los perfiles experimentales, por lo cual se recomienda usar una longitud para la rótula plástica entre 0,33lw y 0,5lw. Los resultados muestran que asumir una deformación lineal es apropiado para el análisis en los elementos de borde, por otra parte los resultados experimentales verificaron que la profundidad del eje neutro varía ligeramente con respecto a la calculada de manera analítica y asumir una deformación máxima de 0,003 en diseño de edificaciones es correcto para la mayoría de los casos.
4 MODELO ANALÍTICO PARA EVALUACIÓN DE CAPACIDAD

En este capítulo se describe el planteamiento de la metodología simplificada la cual ha sido implementada para evaluar el comportamiento de muros esbeltos de concreto reforzado típicos de la práctica constructiva local. El método parte del diagrama Momento – Curvatura para una sección y con base en él, se genera una curva de capacidad que representa el comportamiento de un muro. Para efectos de sensibilidad, se presenta un análisis paramétrico de la relación Momento – Curvatura, y un ejemplo de aplicación de la metodología propuesta.

4.1 Relación Momento – Curvatura

Los métodos actuales de análisis y diseño incluidos en el Reglamento Colombiano de Diseño y Construcción Sismo Resistente NSR-10, no permiten calcular los principales parámetros que caracterizan el comportamiento no lineal de una sección o de un elemento estructural. Adicionalmente, se emplean parámetros que suponen una cierta capacidad de sobrepasar el rango elástico los cuales se utilizan para reducir las fuerzas sísmicas que son empleadas en el diseño. Tal es el caso del factor de capacidad de disipación de energía, R. No obstante, es importante desde el punto de vista de la seguridad y del cumplimiento de las hipótesis de diseño, poder verificar estos valores y reducir la incertidumbre a la hora de estimar la capacidad estructural. La relación momento-curvatura permite caracterizar el comportamiento no lineal de una sección transversal de un elemento. Es posible obtener las curvaturas para diferentes estados de carga, niveles de resistencia, deformaciones unitarias en los materiales constitutivos y parámetros de respuesta global tales como la ductilidad por curvatura μ_ϕ.

Dado el caso que un elemento tenga poca capacidad de ductilidad por curvatura, esto representará una falla frágil cuando la estructura ingrese al rango no lineal, la cual es totalmente indeseada. La condición ideal es que dicho elemento desarrolle un valor alto de μ_ϕ (ductilidad por curvatura), para garantizar que la estructura posea una apropiada disipación de energía, con el fin de facilitar que se generen redistribuciones de momentos y un adecuado comportamiento estructural.
4.1.1 Modelos constitutivos de los materiales

La relación Momento – Curvatura es el insumo principal para el análisis estático no lineal. Para generar el diagrama que presenta dicha relación, es necesario plantear los modelos constitutivos que se utilizan para determinar la relación esfuerzo-deformación del hormigón y del acero. En la Figura 4-1 se presenta el modelo constitutivo empleado para el concreto, el cual corresponde al planteamiento de Hognestad (1955), dicho modelo es uno de los más usados para representar el comportamiento del concreto no confinado, sin embargo, existe un amplio espectro de modelos desarrollados durante los últimos 50 años que permiten considerar diferentes condiciones tanto a nivel de los materiales constitutivos como del detallado del acero de refuerzo. En la Figura 4-2 se presenta el modelo propuesto por Kent y Park en el año 1971 y en la Figura 4-3 se presenta el modelo propuesto por Mander en el año 1988, ambos contemplan el confinamiento en el comportamiento del concreto cuando este se encuentra confinado. Como puede observarse las dos propuestas muestran un aumento en la ductilidad del elemento cuando es empleado acero de refuerzo de confinamiento, por otra parte el modelo constitutivo propuesto por (Mander, 1998) presenta un gran aumento de la capacidad del elemento si el núcleo de concreto se encuentra confinado adecuadamente.

Figura 4-1. Modelo constitutivo del concreto (Hognestad 1955).
Figura 4-2. Modelo constitutivo del concreto (Kent y Park 1971).

Donde:

$f'c$: Resistencia máxima a compresión del concreto.

ε_c: Deformación unitaria del concreto.

ε_{20c}: Deformación unitaria del concreto asociada a 0.20$f'c$.

ε_{50c}: Deformación unitaria del concreto asociada a 0.50$f'c$ (Concreto confinado).

ε_{50u}: Deformación unitaria del concreto asociada a 0.50$f'c$ (Concreto no confinado).

bc: Ancho de la sección.

s: Separación entre los estribos.

ps: Relación entre el volumen del acero confinante (estribos) y el volumen del concreto confinado.

\[
\begin{align*}
\text{Región AB} & \quad f_c = f'c \left[\frac{2\varepsilon_c}{0.002} - \left(\frac{\varepsilon_c}{0.002} \right)^2 \right] \quad (17) \\
\text{Región BC} & \quad f_c = f'c \left[1 - Z(\varepsilon_c - 0.002) \right] \quad (18)
\end{align*}
\]
\[Z = \frac{0.5}{\varepsilon_{50u} + \varepsilon_{50h} - 0.002} \] \hspace{1cm} (19)

\[\varepsilon_{50u} = \frac{3 + 0.002f'c}{f'c - 1000} \] \hspace{1cm} (20)

\[\varepsilon_{50h} = \frac{3}{4} \rho_s \frac{b^n}{s_h} \] \hspace{1cm} (21)

Región CD \hspace{1cm} f_c = 0.2f'c \hspace{1cm} (22)

Donde:

\(f_{cc} \): Resistencia máxima del concreto confinado.

\(f'c \): Resistencia máxima del concreto no confinado.

\(\varepsilon_c \): Deformación unitaria del concreto.

\(\varepsilon_u \): Deformación unitaria última.

Figura 4-3. Modelo constitutivo del concreto (Mander 1988).
\(\varepsilon_{co} \): Deformación unitaria asociada a la resistencia máxima del concreto \(f'c \).

\(\varepsilon_{cc} \): Deformación unitaria del concreto simple, asociada al esfuerzo máximo confinante.

Ec: Modulo de elasticidad del concreto no confinado.

Esec: Modulo secante del concreto confinado asociado al esfuerzo máximo confinante.

La resistencia máxima a compresión \(f_{cc} \) está en función de la resistencia máxima a compresión del concreto no confinado \(f'c \) y del factor de esfuerzo confinado \(\lambda \).

\[
f_c = \frac{xf_{ec}}{r - 1 + x^r} \quad (23)
\]

\[
x = \frac{\varepsilon_c}{\varepsilon_{cc}} \quad (24)
\]

\[
r = \frac{E_c}{E_c - E_{sec}} \quad (25)
\]

\[
\varepsilon_{cc} = \varepsilon_{co} \left[1 + 5\left(\frac{f_{cc}}{f'c} - 1\right) \right] \quad (26)
\]

\[
f_{cc} = \lambda f'c \quad (27)
\]

El modelo constitutivo empleado para el acero, contempla una ecuación de segundo grado para la zona de endurecimiento, dicho modelo representa con gran detalle el comportamiento del acero en la zona plástica. En la Figura 4-4 se presenta uno de los modelos constitutivos para el acero, el cual es uno de los más usados para representar dicho comportamiento.
La zona elástica está delimitada por el esfuerzo \(f_y \) y la deformación unitaria \(\varepsilon_y \), la zona de endurecimiento está delimitada por la deformación unitaria \(\varepsilon_{sh} \) y por último la zona de ruptura está delimitada por el esfuerzo \(f_{su} \) y la deformación unitaria \(\varepsilon_{su} \). Estos datos son necesarios para generar la curva esfuerzo deformación así como lo presentan las siguientes ecuaciones.

\[
\text{Región AB} \quad f_s = \varepsilon_s \cdot E_s \quad (28)
\]

\[
\text{Región BC} \quad f_s = f_y \quad (29)
\]

\[
\text{Región CD} \quad f_s = f_y \left[\frac{m(\varepsilon_s - \varepsilon_{sh}) + 2}{60(\varepsilon_s - \varepsilon_{sh}) + 2} + \frac{(60 - m)(\varepsilon_s - \varepsilon_{sh})}{2(30r + 1)^2} \right] \quad (30)
\]

\[
m = \frac{\left(\frac{f_{su}}{f_y} \right)(30r + 1)^2 - 60r - 1}{15r^2} \quad (31)
\]

\[
r = (\varepsilon_s - \varepsilon_{sh}) \quad (32)
\]
4.1.2 Descripción de la metodología

A continuación se presenta una descripción paso a paso de la metodología para calcular el diagrama momento-curvatura.

1. Seleccionar un valor de deformación máxima del hormigón, con el fin de proponer un límite para el estado último de la sección. Esta selección debe hacerse con base en resultados experimentales y recomendaciones incluidas en códigos o manuales técnicos orientados al diseño por capacidad.

2. Suponer inicialmente la profundidad del eje neutro (c), y con base en esta ubicación trazar el perfil de deformaciones unitarias a lo largo de la sección. Para este paso se supone que la deformación unitaria a lo largo de la sección varía linealmente, esto con el fin de utilizar la compatibilidad de deformaciones para poder hallar las deformaciones unitarias al nivel en que se encuentren ubicadas las barras de refuerzo y en cualquier punto del concreto.

3. Una vez halladas las deformaciones unitarias en los puntos de control (Barras de acero y concreto), se obtienen los esfuerzos respectivos.

4. En función de los esfuerzos hallados anteriormente, se calculan las fuerzas debidas, multiplicando cada esfuerzo por sus respectivas áreas.

5. Se plantea un equilibrio de fuerzas, contemplando tracción y compresión, dicho equilibrio debe cumplirse para la profundidad del eje neutro supuesta, dado el caso que no se cumpla el equilibrio, se deberá comenzar un proceso iterativo desde el paso 2, con el fin de encontrar la profundidad del eje neutro (c), que genere el equilibrio de fuerzas en la sección.

6. Una vez logrado el equilibrio, se calcula el momento flector debido a las fuerzas internas de la sección (Ver la Figura 4-5). La curvatura se calcula como la relación entre la deformación del concreto en la fibra extrema a compresión y la distancia del eje neutro. Las fuerzas de tracción en las barras de acero son presentadas como T_s, y las fuerzas de compresión en las barras de acero son presentadas como C_s,.
por otra parte Cc hace referencia a la fuerza de compresión en el concreto. Con base en lo anterior se generan las resultantes de tracción y compresión en la sección analizada (T y C respectivamente).

![Diagrama de fuerzas internas](image)

Figura 4-5. Fuerzas internas de la sección.

Estos pasos se repiten para cada punto que se quiera definir en el diagrama momento – curvatura. La Figura 4-6 muestra el diagrama Momento – Curvatura, el cual es el resultado de este procedimiento.

![Diagrama Momento – Curvatura](image)

Figura 4-6. Ejemplo Diagrama Momento – Curvatura.
4.2 Curva de capacidad

Para hallar la curva de capacidad de muros en voladizo se emplea un método simplificado de análisis, que adopta como insumo fundamental el diagrama momento-curvatura y la distribución de curvaturas en altura, tal y como se muestra en la Figura 4-7. Para ello, se realizó un análisis de la sección de la base (considerada como la más crítica) teniendo en cuenta la carga axial respectiva.

![Diagrama de curvatura y momento](image)

Figura 4-7. Distribución de curvaturas a lo largo de la altura del muro, adaptada de [7].

El procedimiento empleado para el cálculo de la curva de capacidad del muro, se describe a continuación:

1. Cálculo del diagrama momento-curvatura para la sección crítica en la base del muro.

2. Estimación del desplazamiento de fluencia (Δy) para el muro, a partir de las siguientes expresiones (Tjhin, Aschheim, y Wallace 2007) (Ver la Tabla 4-1).

\[
\Delta y = k \phi_y h_w^2
\]
(33)
Tabla 4-1. Parámetros para el cálculo de \(\Delta y \), adaptada de [7].

<table>
<thead>
<tr>
<th>Número de pisos</th>
<th>(k \Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.333</td>
</tr>
<tr>
<td>2</td>
<td>0.316</td>
</tr>
<tr>
<td>3</td>
<td>0.308</td>
</tr>
<tr>
<td>6</td>
<td>0.297</td>
</tr>
<tr>
<td>10</td>
<td>0.293</td>
</tr>
<tr>
<td>20</td>
<td>0.289</td>
</tr>
</tbody>
</table>

Donde \(\phi_y \) es la curvatura de fluencia y \(h_w \) corresponde a la altura total del muro.

3. Cálculo de la longitud de plastificación para cada muro, \(L_p \) de acuerdo con la expresión propuesta por Paulay y Priestley (1992):

\[
l_p = 0.2 + 0.044A_r I_w
\]

Donde \(A_r \) es la relación de aspecto (\(H_w/L_w \)) y \(L_w \) es la longitud del muro.

La expresión presentada anteriormente es usualmente empleada, no obstante, en el capítulo 2 de este documento se presentan otras expresiones propuestas por varios autores como Fardis, Kowalsky, Wallace, Bohl, entre otros.

4. Estimación del desplazamiento máximo lateral de cada muro en la parte superior (\(\Delta u \)):

\[
\Delta u = \Delta y + \theta_p \left(h_w - \frac{l_p}{2} \right)
\]

\[
\theta_p = (\phi_u - \phi_y) l_p
\]
Donde θ_p corresponde a la rotación plástica y l_p es la longitud de la rótula plástica obtenida de acuerdo a lo presentado en el paso 3.

5. A partir del momento crítico en la base y la altura del elemento, se obtiene la fuerza cortante asociada al límite elástico (V_y) y la capacidad máxima de cada muro (V_u), con base en esto se construye la representación bilineal de la curva de capacidad para el muro analizado (Ver Figura 4-8).

Figura 4-8. Representación bilineal (Curva de capacidad).

4.3 Análisis Paramétrico

Tanto la capacidad como la ductilidad de un muro de concreto reforzado son factores relevantes para obtener un buen desempeño de una estructura en caso de un evento sísmico, dichos factores dependen de parámetros tales como el espesor del muro (t_w), la longitud del muro (L_w), el nivel de carga axial (ALR), la cuantía de acero de refuerzo (ρ), la resistencia a la compresión del concreto ($f'c$), entre otros. A continuación se realiza un análisis paramétrico, variando cada uno de los parámetros mencionados anteriormente, con base en las condiciones más representativas existentes en Colombia, con el fin de observar la incidencia de cada variable en el diagrama Momento - Curvatura. Este análisis se realizó con a apoyo del software Response - 2000, en el cual se modela la sección trasversal del elemento estructural con sus respectivas características tal como se puede observar en la
Figura 4-9, una vez modelado el elemento es posible obtener la relación momento-curvatura e incluso la curva de capacidad.

![Diagrama de sección transversal y parámetros del muro](image)

Figura 4-9. Sección transversal y parámetros del muro (Response – 2000).

4.3.1 Influencia de la cuantía de refuerzo longitudinal

Para este análisis se estudiará la influencia de la cuantía del refuerzo longitudinal en la respuesta del muro de concreto reforzado, para ello la cuantía tomará valores del 1%, 0.75%, 0.50% y 0.25%. Por otra parte a los demás parámetros del muro se le asignan los valores que se presentan a continuación:

Datos del muro:

- Lw: 1200 mm
- Tw: 80 mm
- Hw: 4200 mm
- Hn: 2100 mm
- f´c: 21 MPa
- fy: 420 MPa
- Carga Axial: 100 kN
- Hn/tw: 26,25
- Relación de aspecto (Hw/Lw): 3,5
- Relación de carga axial: 4,96%
Como se puede observar en la Figura 4-10 tanto el momento de fluencia como el momento último aumentan a medida que la cuantía también se incrementa, sin embargo, aumentar un 100% la cuantía representa tan solo un incremento alrededor del 8% en la sobre resistencia de muro, por otra parte la curvatura última disminuye considerablemente (50%) según los resultados obtenidos en la Tabla 4-2. Si bien cuando la cantidad de refuerzo longitudinal en un muro de hormigón armado se incrementa, la capacidad del elemento también lo hace, pero al mismo tiempo la ductilidad de esté disminuye, lo cual no es un buen comportamiento estructural, debido a que el muro pierde la capacidad de mantener un nivel constante de demanda durante un tiempo más prolongado antes de llegar a la falla, lo que puede ocasionar una falla frágil del elemento, lo cual en términos estructurales es inaceptable. Una posible solución a este comportamiento es proveer al elemento de un mejor confinamiento, con el fin de que éste pueda desarrollar una ductilidad
mayor. Por otra parte la curvatura de fluencia se mantiene constante cuando la cuantía longitudinal del muro crece.

4.3.2 Influencia del espesor del muro (tw)

Para este análisis se estudiará la influencia del espesor del muro tw en la respuesta del elemento, para ello el espesor tomará valores de 80 mm, 120 mm, 150 mm y 200 mm. Por otra parte a los demás parámetros del muro se le asignan los valores que se presentan a continuación:

Datos del muro:
- Lw: 1200 mm
- Hw: 4200 mm
- Hn: 2100 mm
- ρ: 1%
- f'c: 21 MPa
- fy: 420 MPa
- Carga Axial: 100 KN
- Relación de aspecto (Hw/Lw): 3,5

<table>
<thead>
<tr>
<th>tw (mm)</th>
<th>Relación de carga axial (%)</th>
<th>My (kNxm)</th>
<th>ϕy (rad/km)</th>
<th>Mu (kNxm)</th>
<th>ϕu (rad/km)</th>
<th>Ductilidad por curvatura (ϕu/ϕy)</th>
<th>Sobre resistencia (Mu/My)</th>
<th>Hn/tw</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>4.96%</td>
<td>181.40</td>
<td>2.59</td>
<td>254.40</td>
<td>21.11</td>
<td>8.15</td>
<td>1.40</td>
<td>26.25</td>
</tr>
<tr>
<td>120</td>
<td>3.31%</td>
<td>255.00</td>
<td>2.59</td>
<td>365.80</td>
<td>23.22</td>
<td>8.97</td>
<td>1.43</td>
<td>17.5</td>
</tr>
<tr>
<td>150</td>
<td>2.65%</td>
<td>328.10</td>
<td>2.59</td>
<td>450.40</td>
<td>25.55</td>
<td>9.86</td>
<td>1.37</td>
<td>14</td>
</tr>
<tr>
<td>200</td>
<td>1.98%</td>
<td>399.00</td>
<td>2.59</td>
<td>590.90</td>
<td>27.68</td>
<td>10.69</td>
<td>1.48</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Tabla 4-3. Valores de Momento-Curvatura para un espesor variable.
Como se puede observar en la Tabla 4-3 y la Figura 4-11 a medida que el espesor del muro (tw) aumenta, tanto el momento de fluencia como el momento último también lo hacen considerablemente (120% aproximadamente), mientras que la curvatura última aumenta a una tasa mucho menor, por lo que al parecer no hay una influencia significativa del espesor (tw) sobre la ductilidad del muro (cuando se hace un análisis en un solo plano), sin embargo si influye sobre su resistencia, igualmente es importante resaltar que los muros esbeltos están propensos a presentar pandeo fuera del plano, lo cual no es un comportamiento aceptable estructuralmente.

Tal como se mencionó anteriormente, al aumentar el espesor del muro (tw) se incrementa la capacidad del muro, lo cual es pretendido en la mayoría de los casos, puesto que el muro posee la capacidad de soportar una mayor demanda debido a un evento sísmico, al mismo tiempo que su ductilidad no se ve afectada, evidenciando así una falla de tipo dúctil, lo cual responde a un buen comportamiento estructural, sin embargo dicho aumento afecta poco la ductilidad del elemento cuando se hace un análisis en el plano, es importante resaltar que si el elemento falla por pandeo fuera del plano este parámetro (tw) influiría directamente en la respuesta del elemento. Por otra parte la curvatura de fluencia se mantiene constante, demostrando a su vez que dicha variable no depende del espesor del muro.
4.3.3 Influencia de la longitud del muro (Lw)

Para este análisis se estudiará la influencia de la longitud del muro Lw en la respuesta del elemento, para ello la longitud tomará valores de 1200 mm, 1600 mm y 2000 mm. Por otra parte a los demás parámetros del muro se le asignan los valores que se presentan a continuación:

Datos del muro:
- Tw: 80 mm
- Hw: 4200 mm
- Hn: 2100 mm
- ρ: 1%
- f´c: 21 MPa
- fy: 420 MPa
- Carga Axial: 100 KN
- Hn/Tw: 26,25

<table>
<thead>
<tr>
<th>Lw (mm)</th>
<th>Relación de carga axial (%)</th>
<th>My (kNxm)</th>
<th>φy (rad/km)</th>
<th>Mu (kNxm)</th>
<th>φu (rad/km)</th>
<th>Ductilidad por curvatura</th>
<th>Sobre resistencia</th>
<th>Relación de aspecto (Hn/Lw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>5.0%</td>
<td>181.40</td>
<td>2.59</td>
<td>254.40</td>
<td>21.11</td>
<td>8.15</td>
<td>1.40</td>
<td>3.50</td>
</tr>
<tr>
<td>1600</td>
<td>3.7%</td>
<td>308.70</td>
<td>1.95</td>
<td>440.00</td>
<td>17.45</td>
<td>8.95</td>
<td>1.43</td>
<td>2.63</td>
</tr>
<tr>
<td>2000</td>
<td>3.0%</td>
<td>480.20</td>
<td>1.61</td>
<td>678.50</td>
<td>14.42</td>
<td>8.96</td>
<td>1.41</td>
<td>2.10</td>
</tr>
</tbody>
</table>

Tabla 4-4. Valores de Momento-Curvatura para una longitud variable.

Figura 4-12. Grafica Momento-Curvatura con longitud variable.
Como se observa en la Figura 4-12 a medida que la longitud del muro aumenta al mismo tiempo lo hace su capacidad (160% aproximadamente), mientras que la ductilidad disminuye y de esta manera la posibilidad de mantener más tiempo un nivel de solicitación constante antes de llegar a la falla. Lo ideal para un diseño adecuado, es utilizar muros largos para controlar la respuesta de una estructura. La ductilidad aparente de un muro corto, la gran mayoría de los casos no puede ser utilizada porque el desplazamiento último del muro más largo, controla la condición de falla. En este sentido, controlar derivas a partir de una gran cantidad de muros cortos, no parece un criterio adecuado. Desafortunadamente muchos ingenieros utilizan muros cortos para esto, cuando realmente tiene función de soportar cargas gravitacionales.

4.3.4 Influencia de la resistencia a la compresión (f´c)
Para este análisis se estudiará la influencia de la resistencia a la compresión del concreto en la respuesta del elemento, para ello dicha resistencia tomará valores de 21 MPa, 28 MPa y 35 MPa. Es importante destacar que en este caso se presentan dos escenarios donde el espesor del muro tw varía con valores de 80 mm y 150 mm. Por otra parte a los demás parámetros del muro se le asignan los valores que se presentan a continuación para cada caso respectivamente:

Caso 1
Datos del muro:
- Lw: 1200 mm
- tw: 80 mm
- Hw: 4200 mm
- Hn: 2100 mm
- ρ: 1%
- fy: 420 MPa
- Carga Axial: 100 KN
- Relación de aspecto (Hw/Lw): 3,5
- Hn/Tw: 26,25
Tabla 4-5. Valores de Momento-Curvatura para un f’c variable.

<table>
<thead>
<tr>
<th>f’c (MPa)</th>
<th>Relación de carga axial (%)</th>
<th>My (kNxm)</th>
<th>ϕy (rad/km)</th>
<th>Mu (kNxm)</th>
<th>ϕu (rad/km)</th>
<th>Ductilidad por curvatura (ϕu/ϕy)</th>
<th>Sobre resistencia (Mu/My)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>5.0%</td>
<td>181.40</td>
<td>2.59</td>
<td>254.40</td>
<td>23.23</td>
<td>8.97</td>
<td>1.40</td>
</tr>
<tr>
<td>28</td>
<td>3.7%</td>
<td>188.30</td>
<td>2.59</td>
<td>262.40</td>
<td>17.45</td>
<td>6.74</td>
<td>1.39</td>
</tr>
<tr>
<td>35</td>
<td>3.0%</td>
<td>193.50</td>
<td>2.59</td>
<td>270.30</td>
<td>15.86</td>
<td>6.12</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Figura 4-13. Grafica Momento-Curvatura con f’c variable.

Caso 2

Datos del muro:
- Lw: 1200 mm
- Tw: 150 mm
- Hw: 4200 mm
- Hn: 2100 mm
- ρ: 0.5%
- fy: 420 MPa
- Carga Axial: 100 KN
- Relación de aspecto (Hw/Lw): 3,5
- Hn/Tw: 14

Tabla 4-6. Valores de Momento-Curvatura para un f’c variable.

<table>
<thead>
<tr>
<th>f’c (MPa)</th>
<th>Relación de carga axial (%)</th>
<th>My (kNxm)</th>
<th>ϕy (rad/km)</th>
<th>Mu (kNxm)</th>
<th>ϕu (rad/km)</th>
<th>Ductilidad por curvatura (ϕu/ϕy)</th>
<th>Sobre resistencia (Mu/My)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>2.6%</td>
<td>184.70</td>
<td>2.59</td>
<td>282.90</td>
<td>49.78</td>
<td>19.22</td>
<td>1.53</td>
</tr>
<tr>
<td>28</td>
<td>2.0%</td>
<td>189.20</td>
<td>2.59</td>
<td>285.20</td>
<td>34.70</td>
<td>13.40</td>
<td>1.51</td>
</tr>
<tr>
<td>35</td>
<td>1.6%</td>
<td>192.90</td>
<td>2.59</td>
<td>291.30</td>
<td>30.91</td>
<td>11.93</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Como se observa en la Figura 4-13 y Figura 4-14 a medida que la resistencia a la compresión f’c aumenta, tanto el momento de fluencia como el momento último también lo hacen en una pequeña proporción (6% aproximadamente entre 21 MPa y 35 MPa), es decir aumenta la capacidad del muro, sin embargo según los resultados obtenidos en la Tabla 4-5 y la Tabla 4-6, la sobre resistencia se mantiene constante o sufre una variación poco considerable, mientras que la curvatura última disminuye, reduciendo de esta manera la ductilidad del elemento.

Con base en lo anterior se puede concluir que la resistencia a la compresión del concreto f’c podría llegar a ser un parámetro significativo para el control del comportamiento de un muro estructural ante un evento sísmico, como también lo son los demás parámetros (el espesor del muro (tw), la cuantía de refuerzo, la longitud del muro (Lw), entre otros).

4.3.5 Influencia de la carga axial (P)

Para este análisis se estudiará la influencia de la carga axial P en la respuesta del elemento, para ello la relación de carga axial tomará valores de 10%, 20% y 30%. Por otra parte a los demás parámetros del muro se le asignan los valores que se presentan a continuación:
Datos del muro:
- Lw: 1200 mm
- tw: 80 mm
- Hw: 4200 mm
- Hn: 2100 mm
- ρ: 1%
- f´c: 21 MPa
- fy: 420 MPa
- Relación de aspecto (Hw/Lw): 3,5
- Hn/Tw: 26,25

Tabla 4-7. Valores de Momento-Curvatura para un nivel de carga axial variable.

<table>
<thead>
<tr>
<th>Relación de carga axial (%)</th>
<th>My (kNxm)</th>
<th>ϕy (rad/km)</th>
<th>Mu (kNxm)</th>
<th>ϕu (rad/km)</th>
<th>Ductilidad por curvatura (ϕu/ϕy)</th>
<th>Sobre resistencia (Mu/My)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0%</td>
<td>223.10</td>
<td>2.85</td>
<td>285.10</td>
<td>14.42</td>
<td>5.06</td>
<td>1.28</td>
</tr>
<tr>
<td>20.0%</td>
<td>288.50</td>
<td>3.14</td>
<td>337.70</td>
<td>8.14</td>
<td>2.59</td>
<td>1.17</td>
</tr>
<tr>
<td>30.0%</td>
<td>350.50</td>
<td>3.80</td>
<td>373.00</td>
<td>6.12</td>
<td>1.61</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Figura 4-15. Grafica Momento-Curvatura con carga axial variable.

Tal como se puede observar en la Tabla 4-7 y Figura 4-15 a medida que aumenta el nivel de carga axial, la capacidad de éste aumenta en baja proporción (30% de más entre ALR de 10% y 30%), mientras que la ductilidad disminuye considerablemente lo cual no es un comportamiento deseable (60% menor entre ALR de 10% y 30%) ; este conducta es totalmente lógica ya que al realizar un símil con una columna, el incremento de la carga
axial aumenta la capacidad de resistir momentos flectores causados por eventos sísmicos, al mismo tiempo que ese sobre esfuerzo generado por el aumento de la carga axial provoca que se llegue a la falla más rápido, es decir que el elemento cuenta con menos ductilidad (aumenta su rigidez). Por otra parte, como se puede observar en la Tabla 4-7 la sobre resistencia varía muy poco para un rango entre el 10% y 30% de relación de carga axial (ALR) (17% menor aproximadamente).

4.4 Ejemplo de aplicación

Con base en la metodología planteada en el presente capítulo, se genera una curva de capacidad para el muro presentado en la Figura 4-16. El acero de refuerzo tiene un esfuerzo de fluencia (f_y) de 420 MPa y un módulo de elasticidad 200.000 MPa, por otra parte, el concreto presenta un esfuerzo a compresión (f'_c) de 28 MPa y un módulo de elasticidad igual a 24.870 MPa. Las características principales del muro son presentadas en la Tabla 4-8.

![Figura 4-16. Sección transversal (Ejemplo de aplicación).](image)

<table>
<thead>
<tr>
<th>tw (mm)</th>
<th>Lw (mm)</th>
<th>hw(mm)</th>
<th>ALR</th>
<th>pl (%)</th>
<th>pt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>700</td>
<td>1750</td>
<td>0.15</td>
<td>1.33</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Tabla 4-8. Características principales (Ejemplo de aplicación).
Una vez planteado el muro de análisis, se procede hallar el diagrama Momento - Curvatura, tal y como se expuso anteriormente (Ver la Figura 4-17). Para este caso se empleó el software Cumbia (Luis A. Montejo y Mervyn J. Kowalsky).

Para los resultados obtenidos del diagrama momento curvatura de la sección, se halla la representación bilineal de la curva de capacidad, como se presenta a continuación.

Figura 4-17. Diagrama Momento – Curvatura (Ejemplo de aplicación).

\[V_y = \frac{M_y}{h \cdot w} = \frac{167.07}{1.75} = 95.45 \text{ kN} \]
\[\Delta y = \frac{\phi y \cdot h \cdot w^2}{3} = \frac{5.4 \times 1.75^2}{3} = 5.5 \text{ mm} \]
Punto B: Este punto limita la respuesta última para la curva de capacidad de la sección que representa el muro de interés.

\[
V_{\text{max}} = \frac{M_{\text{max}}}{h_w} = \frac{203.48}{1.75} = 116.27 \text{ kN}
\]

\[
L_p = 0.2 + 0.044 \times A_r \times L_w = 0.2 + 0.044 \times \frac{1.75}{0.7} \times 0.7 = 0.3 \text{ m}
\]

\[
\Delta u = \Delta y + (\phi u - \phi y)L_p x \left(h_w - \frac{L_p}{2} \right)
\]

\[
\Delta u = 0.0055 + (0.04803 - 0.0054)0.3 \times \left(1.75 - \frac{0.3}{2} \right) = 25.97 \text{ mm}
\]

En la Figura 4-18 se presenta la curva de capacidad que da como resultado, tras aplicar la metodología que se planteó al inicio de este capítulo.

![Figura 4-18. Curva de Capacidad (Ejemplo de aplicación).](image)

En el capítulo 6 se presentará la comparación de la metodología propuesta para algunos casos de estudio escogidos del capítulo 5.
5 CASOS DE ESTUDIO

En el siguiente capítulo se presentan los artículos que son caso de estudio de la presente tesis, esto con fin de evaluar el comportamiento estructural con respecto a tipos de falla, configuración del refuerzo, variación del nivel de carga axial y en general la capacidad de los muros esbeltos de concreto reforzado. Para ello se describe a continuación cada uno de los especímenes evaluados y los resultados obtenidos. Adicionalmente, se presenta un análisis de los resultados reportados. Algunos de estos especímenes fueron seleccionados para comparar su respuesta con la metodología propuesta en el capítulo anterior.

Descripción de los casos de estudio

El sismo de 2010 fue el segundo más fuerte en la historia de Chile, después del sismo en Valdivia de 1960. El comportamiento de los edificios altos de concreto reforzado fue satisfactorio. Entre los daños observados más comunes se presentó el pandeo de los muros estructurales, aplastamiento del concreto, abertura del refuerzo horizontal y la falla del refuerzo vertical. Normalmente este tipo de daños se le atribuye a la presencia de muros delgados, un inadecuado confinamiento de núcleo de concreto, altos niveles de carga axial y a irregularidades de la edificación entre el primer nivel y el resto de ellos.

Los dos primeros artículos de este capítulo reportan resultados importantes de investigación alrededor de los problemas que se detectaron después del sismo de Chile 2010. Por otra parte en el tercer y cuarto artículo se presentan investigaciones con respecto al comportamiento de muros esbeltos de concreto reforzado con las características de confinamiento que exige el código de Europa Central y la influencia del reforzamiento con malla electro soldada doblado en frío o forjada en caliente respectivamente.

Después del sismo de Chile del año 2010, se generaron una serie de reflexiones acerca del comportamiento de los edificios de muros de concreto reforzado. A pesar de que solo se generó un colapso, un gran número de edificios sufrieron daños que generaron pérdidas económicas de gran valor. Cerca del 2% de los edificios de muros de concreto reforzado con más de 9 pisos sufrieron grandes daños durante este sismo. Los daños observados
consistían principalmente en el aplastamiento del concreto, pandeo del refuerzo vertical y abertura del refuerzo horizontal. Estos daños se le atribuyen al bajo nivel de confinamiento para el concreto, un inadecuado detallamiento del refuerzo horizontal, grandes niveles de carga axial y pequeños espesores de muros.

Los investigadores de este trabajo, se plantearon como objetivo reproducir los daños observados y evaluar la influencia de los altos niveles de carga axial en el comportamiento sísmico de edificios de muros de concreto reforzado con ausencia de elementos de borde confinados. Para llevar a cabo este objetivo, se ensayaron tres muros con las mismas características, a escala 1/2, donde el único parámetro variable era el nivel de carga axial (ALR), esto es, 0.15, 0.25 y 0.35 respectivamente. En la Figura 5-1 se observa las características geométricas de los muros mencionados anteriormente.
La longitud de los muros fue de 700 mm, el espesor de 100 mm y la altura de 1600 mm. En la Tabla 5-1 se presentan las características principales que componen los muros ensayados en este artículo, esto es; nivel de carga axial (ALR), cuantía de refuerzo longitudinal (pl) y cuantía de refuerzo transversal (pt).

Tabla 5-1. Tabla de características de los muros ensayados.

<table>
<thead>
<tr>
<th>Muro</th>
<th>ALR</th>
<th>pl (%)</th>
<th>pt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>1.33</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>1.33</td>
<td>0.44</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>1.33</td>
<td>0.44</td>
</tr>
</tbody>
</table>

La resistencia a la compresión del concreto promedio (f'c) fue de 27.4 MPa, por otro parte, el módulo de elasticidad (E) obtenido en estos ensayos dio como resultado 32,700 MPa, el cual es un 33% más grande en comparación al propuesto por el ACI 318 de 4700 \(\sqrt{f'c} \). Para el acero de refuerzo se utilizaron tres diámetros de barra, los cuales fueron de 5 mm, 8 mm y 10 mm. Las propiedades de dichas barras se muestran en la Tabla 5-2.
Los tres muros fueron sometidos a un nivel de carga axial constante durante todo el ensayo. Posteriormente, los muros fueron sometidos a desplazamientos horizontales, con incrementos en su amplitud, estos desplazamientos fueron calculados basados en el desplazamiento horizontal de fluencia, el cual fue estimado como 5.5 mm para los tres especímenes. La instrumentación y la configuración del ensayo se muestran en la Figura 5-2.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>5 mm</th>
<th>8 mm</th>
<th>10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero</td>
<td>AT560-500H</td>
<td>A630-420H</td>
<td>A630-420H</td>
</tr>
<tr>
<td>Esfuerzo de Fluencia (MPa)</td>
<td>608.9</td>
<td>445.6</td>
<td>469.2</td>
</tr>
<tr>
<td>Esfuerzo Último (MPa)</td>
<td>667.7</td>
<td>598.9</td>
<td>675.7</td>
</tr>
<tr>
<td>Módulo de Elasticidad (GPa)</td>
<td>-</td>
<td>225.8</td>
<td>224.7</td>
</tr>
<tr>
<td>Deformación Unitaria de Fluencia</td>
<td>-</td>
<td>0.0020</td>
<td>0.0021</td>
</tr>
<tr>
<td>Deformación Unitaria Última</td>
<td>0.057</td>
<td>0.151</td>
<td>0.166</td>
</tr>
</tbody>
</table>

Figura 5-2. Configuración del ensayo, adaptada de [2].

Los tres muros presentaron un mecanismo de falla muy similar, para los primeros ciclos, el comienzo y propagación de las fisuras no presentó grandes diferencias entre los tres especímenes, sin embargo, en los últimos instantes dicho comportamiento fue afectado por el nivel de carga axial, el cual era diferente para cada muro (15%, 25% y 35% respectivamente). Las primeras grietas se presentaron para un desplazamiento horizontal...
de 8.1 mm en los tres muros, estas primeras grietas fueron diagonales a lo largo de la altura del muro, las cuales fueron seguidas por grietas a flexión horizontales cerca a la base, en la zona de tracción (ver Fotografía 5-1).

Después de la fluencia del acero longitudinal, las fisuras horizontales debidas a los esfuerzos de flexión ubicados cerca a la base del muro, se propagaron hacia el centro de este. Adicionalmente, se generaron fisuras diagonales de gran longitud a lo largo del muro.

Estos tres especímenes presentaron una falla frágil a compresión y pandeo fuera del plano, dicho pandeo no solo se presentó en las barras ubicadas en los elementos de borde, sino también en las barras ubicadas en el alma; adicionalmente se presentaron aberturas en el refuerzo horizontal, debido al pobre detallamiento de éste con estribos a 90° (ver la Fotografía 5-2 y la Fotografía 5-3). Por consiguiente dicho refuerzo horizontal no fue efectivo, debido al poco confinamiento proporcionado al concreto y a la forma de doblar la barra.

Fotografía 5-1. Patrones de grietas, adaptada de [2].
Fotografía 5-2. Pandeo del refuerzo longitudinal, adaptada de [2].

Fotografía 5-3. Pandeo del muro fuera del plano, adaptada de [2].

En las Figura 5-3, 5-4 y 5-5 se presentan las curvas histerécticas de los tres muros ensayados, las cuales relacional la fuerza lateral aplicada con el desplazamiento en parte
superior del muro. Las marcas señaladas en rojo sobre la gráfica hacen referencia al punto de fluencia, la capacidad máxima y el punto de falla respectivamente.

Figura 5-3. Curva Histerética – Muro 1, adaptada de [2].

Figura 5-4. Curva Histerética – Muro 2, adaptada de [2].
La longitud de plastificación promedio medida para los tres muros fue de 243 mm, sin embargo, para obtener una buena predicción numérica de los resultados, fue necesario emplear las siguientes longitudes para los muros 1, 2 y 3, respectivamente: 5.9, 4.9 y 5.2 xtw .

Como puede observarse desde la Figura 5-3 hasta la Figura 5-5, el cortante máximo y el desplazamiento último para el Muro 1 fueron 143.32 kN y 37.1 mm (deriva de 2.7%) respectivamente. El muro 2 presentó un cortante máximo de 160.90 kN y un desplazamiento último de 31.2 mm (deriva de 1.8%). Por último, el Muro 3 dio como resultado un cortante máximo de 185.6 kN y un desplazamiento último de 24.1 mm (deriva de 1.5%).

El Muro 1 con ALR 0.15 tuvo un comportamiento más dúctil que los otros dos muros y su falla ocurrió con una deriva del 2.7%. Esto concluye que la capacidad por desplazamiento de un muro es reducida cuando se incrementa el nivel de carga axial de 0.15 a 0.35. Por otra parte se considera que el límite de carga axial adoptado por el código Chileno no es adecuado para muros esbeltos de concreto reforzado sin presencia de elementos de borde con un adecuado confinamiento.

Figura 5-5. Curva Histerética – Muro 3, adaptada de [2].
El primer objetivo de este estudio fue entender los daños observados en los edificios de muros esbeltos en concreto reforzado registrados en el sismo de Chile de 2010, además de reproducir y analizar experimentalmente el comportamiento de cada muro. Los experimentos fueron dirigidos a identificar los cambios sobre el comportamiento sísmico en muros donde se presentaba un espesor reducido, la relación de aspecto era reducida y el detallamiento del acero de refuerzo era modificado. El segundo objetivo fue generar recomendaciones para estimar el desplazamiento lateral y la rigidez efectiva de muros en voladizo.

Seis muros esbeltos de concreto reforzado en escala ½ fueron construidos y ensayados usando ciclos con incrementos de carga lateral y un nivel de carga axial (ALR = N/(fc x Ag) constante de 0.15. Tres muros adicionales fueron ensayados en el artículo mencionado anteriormente, siendo estos del mismo proyecto de investigación, donde el parámetro analizado fue el nivel de carga axial.

La longitud de los muros es de 700 mm y el espesor es de 100 mm, excepto por el Muro 4, el cual tiene un espesor de 75 mm. El recubrimiento de concreto es el mismo para todos los muros y es de 10 mm. La altura de los muros es de 1600 mm, excepto por el Muro 5 que tiene una altura de 1180 mm. Cada uno de estos muros es comparado con el Muro 1 mencionado en el artículo anterior (Ver la Figura 5-1). En la Tabla 5-3 se presentan las características principales que componen los muros ensayados en este artículo. En la Figura 5-6 se presentan las secciones transversales de los muros ensayados en este artículo.

Tabla 5-3. Tabla de características de los muros ensayados.

<table>
<thead>
<tr>
<th>Muro</th>
<th>tw (mm)</th>
<th>hw(mm)</th>
<th>M/V x lw</th>
<th>pl (%)</th>
<th>pt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>75</td>
<td>1600</td>
<td>2.5</td>
<td>1.16</td>
<td>0.44</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>1180</td>
<td>1.9</td>
<td>1.17</td>
<td>0.44</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>1600</td>
<td>2.5</td>
<td>1.34</td>
<td>0.46</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>1600</td>
<td>2.5</td>
<td>1.17</td>
<td>0.44</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>1600</td>
<td>2.5</td>
<td>1.17</td>
<td>0.64</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>1600</td>
<td>2.5</td>
<td>1.17</td>
<td>0.56</td>
</tr>
</tbody>
</table>
La resistencia compresión del concreto promedio (f'_c) de 27.4 MPa, por otro parte, el módulo de elasticidad (E) obtenido en estos ensayos dio como resultado 32,700 MPa, el cual es un 33% más grande en comparación al propuesto por el ACI 318 de 4700 $\sqrt{f'_c}$. Para el acero de refuerzo fueron utilizados cuatro diámetros de barra, los cuales fueron 4.2 mm, 5 mm, 8 mm y 10 mm. Las propiedades de dichas barras son presentadas a continuación (Ver la Tabla 5-4).

Figura 5-6. Sección transversal de los muros 4, 5, 6, 7, 8 y 9, adaptada de [3].
Tabla 5-4. Propiedades del acero de refuerzo.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>4.2 mm</th>
<th>5 mm</th>
<th>8 mm</th>
<th>10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero</td>
<td>AT560-500H</td>
<td>AT560-500H</td>
<td>A630-420H</td>
<td>A630-420H</td>
</tr>
<tr>
<td>Esfuerzo de Fluencia (MPa)</td>
<td>523.9</td>
<td>608.9</td>
<td>445.6</td>
<td>469.2</td>
</tr>
<tr>
<td>Esfuerzo Último (MPa)</td>
<td>575.7</td>
<td>667.7</td>
<td>598.9</td>
<td>675.7</td>
</tr>
<tr>
<td>Módulo de Elasticidad (GPa)</td>
<td>-</td>
<td>-</td>
<td>225.8</td>
<td>224.7</td>
</tr>
<tr>
<td>Deformación Unitaria de Fluencia</td>
<td>-</td>
<td>-</td>
<td>0.0020</td>
<td>0.0021</td>
</tr>
<tr>
<td>Deformación Unitaria Última</td>
<td>0.0051</td>
<td>0.057</td>
<td>0.151</td>
<td>0.166</td>
</tr>
</tbody>
</table>

Cada muro fue instrumentado con 2 celdas de carga, 14 transductores de desplazamientos y 16 galgas extensométricas para medir la deformación unitaria en el acero de refuerzo. En estos ensayos no fueron considerados los efectos P-Delta y las rotaciones en la zona superior de los muros no fueron restringidas. Los muros estuvieron bajo un nivel de carga axial constante de 0.15, mientras eran sometidos a un desplazamiento horizontal con una tasa constante de crecimiento de 10 mm/min.

Con respecto al comportamiento de la falla en los muros, se encontró que las primeras fisuras observadas fueron debidas a esfuerzos de cortante en sentido diagonal, a las cuales le siguieron fisuras horizontales debidas a esfuerzos de flexión, ubicadas cerca a la base de los muros. Después de algunos ciclos de carga se observó el desprendimiento del recubrimiento de concreto, lo cual fue observado en ambos bordes debido a los altos esfuerzos de compresión en estas zonas. En la mayoría de los muros el pandeo del refuerzo ocurrió después del desprendimiento del recubrimiento de concreto. Los ensayos terminaron cuando no era posible aplicar la carga axial, esto debido al pandeo fuera del plano que se generaba en los especímenes.

Desde la Fotografía 5-4 hasta la Fotografía 5-9 se muestra el tipo de falla que presentó cada muro ensayado.
Fotografía 5-4. Vista frontal de la falla – Muro 4, adaptada de [3].

Fotografía 5-5. Vista frontal de la falla – Muro 5, adaptada de [3].

Fotografía 5-6. Vista frontal de la falla – Muro 6, adaptada de [3].

Fotografía 5-7. Vista frontal de la falla – Muro 7, adaptada de [3].

Fotografía 5-8. Vista frontal de la falla – Muro 8, adaptada de [3].

Fotografía 5-9. Vista frontal de la falla – Muro 9, adaptada de [3].
A continuación se presentan las curvas histeréticas que dieron como resultado de los seis muros ensayados, cada una de ellas es comparada con el resultado del Muro 1 (Muro de referencia).

Figura 5-7. Curva Histerética – Muro 4, adaptada de [3].

Figura 5-8. Curva Histerética – Muro 5, adaptada de [3].

Figura 5-9. Curva Histerética – Muro 6, adaptada de [3].

Figura 5-10. Curva Histerética – Muro 7, adaptada de [3].
Comparado con el muro de referencia (Muro 1), el Muro 4 presenta un desplazamiento último 25% menor y la fuerza lateral se redujo en un 22%, lo cual es coherente ya que estos valores son proporcionales a la sección transversal del muro analizado, esto teniendo en cuenta el corto espesor de dicho muro. La longitud plástica medida para el Muro 4 es de 180 mm, la cual es un 18% menor en comparación con el muro de referencia. Adicionalmente los muros con espesores pequeños son susceptibles al pandeo fuera del plano como fue observado después de la falla por aplastamiento del concreto.

El Muro 5 tuvo un mecanismo de falla similar comparado con el muro de referencia. El decrecimiento de la relación de aspecto reduce tanto el desplazamiento último, como la capacidad de disipación de energía en un 36% y 11% respectivamente. La fuerza lateral incremento en un 25% debido a la poca altura que presentaba dicho muro.

El Muro 6 con refuerzo vertical uniformemente distribuido en toda la sección, registró una deriva un 22% menor en comparación a la del Muro 1, esto es atribuido al rápido pandeo del refuerzo vertical debido a la reducción del diámetro de las barras de refuerzo en los elementos de borde. Por otra parte la fuerza lateral máxima de dicho muro fue un 4% menor a la presentada por el muro de referencia. El uso de un refuerzo vertical concentrado en los elementos de borde, incrementa la fuerza máxima lateral y el desplazamiento último.

Para el muro 7, el cual tenía estribos con ganchos de 135°, no presentó cambios significativos con respecto al Muro 1 (estribos de 90°), sin embargo, en el Muro 7 dichos estribos presentaron una abertura menor que los del muro de referencia. Es de esperarse que estribos con ganchos de 135° pudiesen ser más efectivos en muros más gruesos,
donde el núcleo de concreto esté mejor confinado y permita mayores desplazamientos en la zona dúctil.

La adición de estribos cerrados en los elementos de borde para el Muro 8, incrementó la capacidad y el desplazamiento último en un 8% y un 30% respectivamente comparado con el Muro 1. El incremento en la capacidad y la ductilidad en el Muro 8 se le atribuyen principalmente a la disminución del espaciamiento vertical del refuerzo horizontal de los elementos de borde, debido a que evitaban el pandeo del refuerzo vertical ubicado en esta zona. Adicionalmente dichos estribos pueden ayudar a confinar el núcleo de concreto que se ubica en los elemento de borde.

La adición de acero transversal en el alma para el Muro 9, incremento el desplazamiento y la capacidad de disipación de energía en un 58% y 33% respectivamente comparado con el Muro 1. La capacidad no incremento en este muro, como si incremento en el Muro 8 con la adición de estribos cerrados en los elementos de borde a un menor espaciamiento vertical. El uso de acero transversal en el alma disminuye la degradación de la capacidad cuando ésta es comparada con el muro de referencia, sin embargo, dicha degradación se presentó menor que en el Muro 8. El incremento en el desplazamiento en la zona dúctil y la capacidad de disipación de energía se le atribuye al uso de acero trasversal en el alma (ganchos), debido a que éste restringe el pandeo lateral del refuerzo vertical.

Por último los autores de este artículo realizaron una comparación entre el modelo analítico de fibras plantado en el programa Matlab y los resultados experimentales (ver la Figura 5-13). Dicha comparación se realiza entre los diagramas Momento – Curvatura tanto teórico como experimental del muro 9 descrito anteriormente.
Como puede observarse en la figura anterior, el resultado analítico difiere al resultado experimental, en cuanto al comportamiento elástico de la sección y a la respuesta última de esta (Momento máximo y desplazamiento último).

Se concluye que el método propuesto por el ACI 318-08 subestima la capacidad lateral de los muros ensayados en un 27%. El método de la rótula plástica con una longitud plástica de 2.5 tw subestima el desplazamiento último en un 29%. Ambas estimaciones pueden ser mejoradas incrementando la longitud plástica (4.5 tw), ampliando simultáneamente la zona donde se genera la rotación plástica y a su vez acortando el brazo de palanca al centro de la rótula plástica.

Existen diferencias importantes con respecto a las propiedades mecánicas del acero de refuerzo. Particularmente en Europa Central la importancia de las propiedades de ductilidad del refuerzo longitudinal sobre la capacidad por desplazamiento de los muros, fue por mucho tiempo subestimada y el acero de refuerzo simplemente estaba concebido por su fuerza más no por su capacidad de deformación. Como consecuencia de esto, una porción
de los edificios en muros de concreto reforzado fueron construidos con acero de refuerzo que posee propiedades de ductilidad inferiores.

Este artículo presenta los resultados de un ensayo cíclico cuasi – estático de seis muros de concreto reforzado realizado en ETH de Zurich. Dicho artículo presenta el efecto de diferentes configuraciones de acero de refuerzo vertical y las diferentes propiedades de ductilidad del refuerzo, las cuales son típicas del comportamiento de los muros esbeltos de Europa Central. Los resultados experimentales muestran la importancia de la configuración del refuerzo y las propiedades de ductilidad de los elementos de borde y la zona central para el comportamiento por deformaciones de los muros esbeltos. En la Tabla 5-5 se presentan las características principales que componen los muros ensayados en este artículo. En este caso (N) es la fuerza axial, (ALR) es la relación de carga axial, (ρ borde) de la cuantía longitudinal de los elementos de borde, (ρ alma) es la cuantía longitudinal ubicada en el alma del espécimen, (ρ tot) la cuantía longitudinal total en el muro, (ρ h) la cuantía transversal y (s) la separación del refuerzo transversal. En la Figura 5-14 y la Figura 5-15 se presentan las secciones transversales de los muros ensayados en este artículo.
Figura 5-14. Geometría y detallado de los muros, adaptada de [4].

Tabla 5-5. Tabla de características de los muros ensayados.

<table>
<thead>
<tr>
<th>Muro</th>
<th>N (kN)</th>
<th>ALR</th>
<th>ρ_{borde} (%)</th>
<th>ρ_{alma} (%)</th>
<th>ρ_{tot} (%)</th>
<th>ρ_h (%)</th>
<th>s (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSH1</td>
<td>689</td>
<td>0.051</td>
<td>1.32</td>
<td>0.30</td>
<td>0.54</td>
<td>0.25</td>
<td>75</td>
</tr>
<tr>
<td>WSH2</td>
<td>691</td>
<td>0.057</td>
<td>1.32</td>
<td>0.30</td>
<td>0.54</td>
<td>0.25</td>
<td>75</td>
</tr>
<tr>
<td>WSH3</td>
<td>686</td>
<td>0.058</td>
<td>1.54</td>
<td>0.54</td>
<td>0.82</td>
<td>0.25</td>
<td>75</td>
</tr>
<tr>
<td>WSH4</td>
<td>695</td>
<td>0.057</td>
<td>1.54</td>
<td>0.54</td>
<td>0.82</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>WSH5</td>
<td>1474</td>
<td>0.128</td>
<td>0.67</td>
<td>0.27</td>
<td>0.39</td>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td>WSH6</td>
<td>1476</td>
<td>0.108</td>
<td>1.54</td>
<td>0.54</td>
<td>0.82</td>
<td>0.25</td>
<td>50</td>
</tr>
</tbody>
</table>
Figura 5-15. Sección transversal de los muros WSH1, WSH2, WSH3, WSH4, WSH5 y WSH6, adaptada de [4].

En la Tabla 5-6 se presentan las propiedades mecánicas del concreto para cada muro. Desde la Tabla 5-7 hasta la Tabla 5-10 se presentan los parámetros de esfuerzo y ductilidad del acero de refuerzo para cada muro.
Tabla 5-6. Características del concreto.

<table>
<thead>
<tr>
<th>Muro</th>
<th>ρc (kg/m³)</th>
<th>f’c (MPa)</th>
<th>Ec (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSH1</td>
<td>2397</td>
<td>45.0</td>
<td>44.4</td>
</tr>
<tr>
<td>WSH2</td>
<td>2421</td>
<td>40.5</td>
<td>37.1</td>
</tr>
<tr>
<td>WSH3</td>
<td>2381</td>
<td>39.2</td>
<td>35.2</td>
</tr>
<tr>
<td>WSH4</td>
<td>2378</td>
<td>40.9</td>
<td>38.5</td>
</tr>
<tr>
<td>WSH5</td>
<td>2404</td>
<td>38.3</td>
<td>36.1</td>
</tr>
<tr>
<td>WSH6</td>
<td>2383</td>
<td>45.6</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Tabla 5-7. Características de acero de refuerzo WSH1.

<table>
<thead>
<tr>
<th>Barra (mm)</th>
<th>fy (MPa)</th>
<th>fu (MPa)</th>
<th>fu/fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>547.3</td>
<td>619.9</td>
<td>1.13</td>
</tr>
<tr>
<td>6</td>
<td>583.6</td>
<td>600.7</td>
<td>1.03</td>
</tr>
<tr>
<td>3.5</td>
<td>655.9</td>
<td>662.0</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Tabla 5-8. Características de acero de refuerzo WSH2.

<table>
<thead>
<tr>
<th>Barra (mm)</th>
<th>fy (MPa)</th>
<th>fu (MPa)</th>
<th>fu/fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>583.1</td>
<td>747.4</td>
<td>1.28</td>
</tr>
<tr>
<td>6</td>
<td>484.9</td>
<td>534.5</td>
<td>1.10</td>
</tr>
<tr>
<td>4.2</td>
<td>526.0</td>
<td>583.2</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Tabla 5-9. Características de acero de refuerzo WSH3.

<table>
<thead>
<tr>
<th>Barra (mm)</th>
<th>fy (MPa)</th>
<th>fu (MPa)</th>
<th>fu/fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>601.0</td>
<td>725.5</td>
<td>1.21</td>
</tr>
<tr>
<td>8</td>
<td>569.2</td>
<td>700.2</td>
<td>1.23</td>
</tr>
<tr>
<td>6</td>
<td>489.0</td>
<td>552.2</td>
<td>1.13</td>
</tr>
<tr>
<td>4.2</td>
<td>562.2</td>
<td>615.0</td>
<td>1.09</td>
</tr>
</tbody>
</table>
Tabla 5-10. Características de acero de refuerzo WSH4, WHS5 y WSH6.

<table>
<thead>
<tr>
<th>Barra (mm)</th>
<th>fy (MPa)</th>
<th>fu (MPa)</th>
<th>fu/fy</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>576.0</td>
<td>674.9</td>
<td>1.17</td>
</tr>
<tr>
<td>8</td>
<td>583.7</td>
<td>714.4</td>
<td>1.22</td>
</tr>
<tr>
<td>6</td>
<td>518.9</td>
<td>558.7</td>
<td>1.08</td>
</tr>
<tr>
<td>4.2</td>
<td>562.2</td>
<td>615.0</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Los muros ensayados se concibieron a escala ½, los cuales se asemejaban a la zona inferior de un edificio en muros de concreto reforzado de 6 pisos con una altura aproximada de 20.4 m. Las dimensiones y el refuerzo a cortante para todos los especímenes son similares, dicho refuerzo a cortante cumple los requisitos mínimos sugeridos por la norma europea. Cada muro tenía en su zona superior dos gatos hidráulicos conectados en serie con una capacidad de 500 kN y un desplazamiento máximo de 100 mm; se utilizaron a su vez celdas de carga y transductores de desplazamiento. Solo para el muro WSH6 se utilizó un actuador con capacidad de 1000 kN y desplazamiento máximo de 100 mm.

Desde la Fotografía 5-10 hasta la Fotografía 5-15 se muestra el tipo de falla que presento cada muro ensayado.
Fotografía 5-12. Vista frontal de la falla – Muro WSH3, adaptada de [4].

Fotografía 5-13. Vista frontal de la falla – Muro WSH4, adaptada de [4].

Fotografía 5-14. Vista frontal de la falla – Muro WSH5, adaptada de [4].

Fotografía 5-15. Vista frontal de la falla – Muro WSH6, adaptada de [4].
A continuación se presentan las curvas histeréticas que dieron como resultado de los seis muros ensayados, cada una de ellas relaciona la fuerza en el actuador con el desplazamiento y deriva en la zona superior de los especímenes (Ver desde la Figura 5-16 hasta la Figura 5-21).

Figura 5-16. Curva Histerética – Muro WSH1, adaptada de [4].

Figura 5-17. Curva Histerética – Muro WSH2, adaptada de [4].

De todos los especímenes ensayados, el muro WSH1 tenía las características más pobres de ductilidad (detallado de refuerzo). Lo anterior aplica particularmente para el refuerzo del alma, el cual mostró un coeficiente de ductilidad (fu/fy) de 1.03. Como consecuencia de esto la primera ruptura en las barras de refuerzo ubicadas en el alma se dio cuando la deriva alcanzó valores de 0.68%. Para este entonces el recubrimiento del concreto en la base del muro mostraba las primeras fisuras verticales, las cuales siempre aparecían antes del desprendimiento del concreto.

La configuración de refuerzo del muro WSH2 fue similar a la del muro WSH1 pero las propiedades de ductilidad del acero de refuerzo fueron mejores. Esto se evidencia ya que la ruptura de la primera barra de refuerzo ubicada en el alma se da cuando la deriva alcanza valores del 1.16%. Esta deriva fue mucha mayor que la presentada por el muro WSH1 pero las barras de refuerzo del muro WSH2 fallaron en valores de esfuerzo inelásticos no muy altos ya que en dicho momento, el recubrimiento del concreto no presenta fisuras importantes o desprendimiento del mismo.

Para los estándares del código de Europa Central, el muro WSH3 representa un modelo en cuanto a unas adecuadas características de ductilidad y detallado del acero de refuerzo. Las cantidades de refuerzo, especialmente en el alma, son considerablemente mayores a las presentadas por los muros WSH1 y WSH2, como también las propiedades de ductilidad de la sección. Como consecuencia de esto el refuerzo longitudinal de dicho muro no falló
prematuramente. Los desprendimientos del recubrimiento del concreto iniciaron para una deriva de 1.02%, no obstante las barras de refuerzo longitudinales no eran aun visibles. Cuando el muro alcanzó derivas del 1.70% se presentaron los primeros síntomas de pandeo fuera del plano, y a pesar de reducido espaciamiento de los estribos, dicho pandeo empezó a ser más evidente cuando la deriva alcanzó el valor de 1.79%. Este muro presentó una gran estabilidad para las solicitaciones impuestas.

La configuración del refuerzo del muro WSH4 fue similar a las presentadas por el muro WSH3, así como también las propiedades de ductilidad y detallamiento del acero de refuerzo longitudinal, sin embargo el muro WSH4 no presentaba acero dispuesto para confinamiento del concreto. Dicho muro presentó el primer desprendimiento del concreto de recubrimiento cuando la deriva alcanzó un valor de 1.02%. Debido a que el refuerzo longitudinal no fue estabilizado con estribos de confinamiento, el fenómeno de pandeo fuera del plano del muro comenzó al mismo tiempo que se desarrollaba el desprendimiento del concreto de recubrimiento. Cuando el muro alcanzó un valor de deriva 1.02% fue posible identificar el primer pandeo de una barra del refuerzo longitudinal. Tanto las grietas del muro WSH3 como las WSH4 fueron similares, el segundo de estos muros presento un mayor daño en la zona de compresión del concreto, debido a que sufrió un aplastamiento del mismo por la falta de confinamiento y elementos de borde (Ver la Figura 5-19).

El muro WSH5 fue diseñado para una capacidad de momento similar a la del muro WSH3 pero la carga axial fue aproximadamente 2.14 veces mayor, no obstante la cuantía de refuerzo longitudinal no fue reducida. Una vez se pandearon las primer barras de refuerzo (deriva = 1.01%) fue posible identificar un pandeo general del muro fuera del plano hasta una altura de 110 mm con respecto a la base.

El muro WSH6 fue sujeto a la misma carga axial del muro WSH5, sin embargo, el muro WSH6 tenía las mismas propiedades de ductilidad y detalle del acero de refuerzo que el muro WSH3. El desprendimiento en el concreto de recubrimiento comenzó a presentarse cuando la deriva alcanzó un valor de 0.57% y en 0.85% las barras de las esquinas empezaron a ser visibles, mas no se evidenciaba síntomas de pandeo en dichos elementos. La falla abrupta fue causa por el aplastamiento del concreto en la zona de compresión, debido a la falla de algunos de los estribos de confinamiento.
En la Tabla 5-11 se presentan los resultados experimentales tanto de fuerza cortante máxima como de momento flector máximo.

Tabla 5-11. Fuerzas cortantes y momentos flectores máximos experimentales.

<table>
<thead>
<tr>
<th>Muro</th>
<th>Vmax (kN)</th>
<th>Mmax (kN x m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSH1</td>
<td>336</td>
<td>1533</td>
</tr>
<tr>
<td>WSH2</td>
<td>359</td>
<td>1639</td>
</tr>
<tr>
<td>WSH3</td>
<td>454</td>
<td>2072</td>
</tr>
<tr>
<td>WSH4</td>
<td>443</td>
<td>2020</td>
</tr>
<tr>
<td>WSH5</td>
<td>439</td>
<td>2002</td>
</tr>
<tr>
<td>WSH6</td>
<td>597</td>
<td>2724</td>
</tr>
</tbody>
</table>

Para concluir, los investigadores encontraron que los ensayos realizados con los seis muros previamente descritos, mostraban que la reducción en la capacidad de deformación de muro, depende directamente de la cantidad de refuerzo longitudinal que contenga el mismo. Este efecto era aún mayor si las barras de refuerzo longitudinal no contaban con un adecuado detallamiento de los estribos de confinamiento. Por otra parte al evaluar el comportamiento inelástico de las deformaciones de dichos muros con el método de la rótula plástica, dicho método debe contemplar la propagación de la plasticidad debido al comportamiento de falla del muro.

La falla prematura del acero de refuerzo se produce normalmente en un grieta generada por los esfuerzos inducidos en la sección, dicha grieta a menudo cruza todo el muro, generando un plano de debilidad severo. Por lo tanto, en esta sección la demanda de deformaciones se incrementa desmesuradamente generando una falla inevitable para el elemento.

Es importante resaltar también que en dichos ensayos se identificó que el nivel de confinamiento del muro, generaba una mayor disipación de energía. Sin embargo bajo la presencia de grandes niveles de carga axial la rigidez de muro aumentaba y así mismo su capacidad de resistir momentos flectores mayores.
En la práctica el refuerzo tanto vertical como horizontal de los muros de concreto reforzado son dispuestos generalmente por barras de acero corrugado. Dicha configuración podría ser convenientemente sustituida por mallas de acero electro soldadas, esto debido a la facilidad de su instalación y el ahorro en gastos constructivos. No se sabe mucho con respecto a aplicación de la mallas electro soldadas en los muros de concreto reforzado y la influencia en el comportamiento dúctil del elemento. En particular, la tradicional malla doblada en frío generalmente se caracteriza por tener una baja ductilidad (1.05), por el contrario, la malla forjada en caliente tiene mucha mejor ductilidad (1.15).

Este artículo presenta los resultados de un proyecto de investigación experimental sobre muros estructurales en voladizo hechos en concreto reforzado con mallas electro soldadas, dichos muros fueron sujetos a cargas cíclicas en el plano. El principal objetivo de esta investigación es establecer si las mallas electro soldadas pueden proveer la suficiente ductilidad a los elementos frente a un evento sísmico. Diez y ocho muros de concreto reforzado fueron ensayados para comparar el comportamiento de diferentes diseños con barras de acero, mallas electro soldadas o ambos. Para esta investigación fueron contemplados mallas conformadas por barras de acero de refuerzo, mallas forjadas en caliente y las tradicionales mallas dobladas en frío. En la Tabla 5-12 se presentan las características de los especímenes ensayados.

En total fueron 18 muros ensayados los cuales se dividieron en dos grupos, el primer grupo consta de 10 muros los cuales se identifican con una sección transversal de 150 mm de espesor y 1200 mm de longitud, el segundo grupo consta de 8 muros y se identifican con una sección de 150 mm de espesor y 1300 mm de largo. Desde la Figura 5-22 hasta la Figura 5-25 se presentan las características geométricas y el detallado de refuerzo para los muros ensayados.

—
Tabla 5-12. Características de los especímenes ensayados.

<table>
<thead>
<tr>
<th>Muro</th>
<th>Acero de refuerzo</th>
<th>Tipo de malla</th>
<th>Carga axial (kN)</th>
<th>Sección</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16R8-1</td>
<td>12φ16 + 10φ8</td>
<td>-</td>
<td>-</td>
<td>a</td>
</tr>
<tr>
<td>B16R8-2</td>
<td>12φ16 + 10φ8</td>
<td>-</td>
<td>-</td>
<td>a</td>
</tr>
<tr>
<td>B14HR8-1</td>
<td>12φ14</td>
<td>Dobladada en frio φ8</td>
<td>600</td>
<td>b</td>
</tr>
<tr>
<td>B14CD8-1</td>
<td>12φ14</td>
<td>Forjada en Caliente φ8</td>
<td>600</td>
<td>b</td>
</tr>
<tr>
<td>B14HR8-2</td>
<td>12φ14</td>
<td>Dobladada en frio φ8</td>
<td>600</td>
<td>b</td>
</tr>
<tr>
<td>B14CD8-2</td>
<td>12φ14</td>
<td>Forjada en Caliente φ8</td>
<td>600</td>
<td>b</td>
</tr>
<tr>
<td>HR12C-1</td>
<td>-</td>
<td>Dobladada en frio φ12</td>
<td>600</td>
<td>c</td>
</tr>
<tr>
<td>CD12C-1</td>
<td>-</td>
<td>Forjada en Caliente φ12</td>
<td>600</td>
<td>c</td>
</tr>
<tr>
<td>HR12C-2</td>
<td>-</td>
<td>Dobladada en frio φ12</td>
<td>600</td>
<td>c</td>
</tr>
<tr>
<td>CD12C-2</td>
<td>-</td>
<td>Forjada en Caliente φ12</td>
<td>600</td>
<td>c</td>
</tr>
<tr>
<td>B14HR8S</td>
<td>12φ14</td>
<td>Dobladada en frio φ8</td>
<td>-</td>
<td>f</td>
</tr>
<tr>
<td>B14HR8U</td>
<td>12φ14</td>
<td>Forjada en Caliente φ8</td>
<td>-</td>
<td>g</td>
</tr>
<tr>
<td>B14CD8S</td>
<td>12φ14</td>
<td>Dobladada en frio φ8</td>
<td>-</td>
<td>f</td>
</tr>
<tr>
<td>B14CD8U</td>
<td>12φ14</td>
<td>Forjada en Caliente φ8</td>
<td>-</td>
<td>g</td>
</tr>
<tr>
<td>HR12S</td>
<td>-</td>
<td>Dobladada en frio φ12</td>
<td>-</td>
<td>d</td>
</tr>
<tr>
<td>HR12U</td>
<td>-</td>
<td>Forjada en Caliente φ12</td>
<td>-</td>
<td>e</td>
</tr>
<tr>
<td>CD12S</td>
<td>-</td>
<td>Dobladada en frio φ12</td>
<td>-</td>
<td>d</td>
</tr>
<tr>
<td>CD12U</td>
<td>-</td>
<td>Forjada en Caliente φ12</td>
<td>-</td>
<td>e</td>
</tr>
</tbody>
</table>

Figura 5-22. Detallado y configuración geométrica del primer grupo de muros ensayado, adaptada de [5].
Figura 5-23. Secciones transversales tipo a, b y c, adaptada de [5].

Figura 5-24. Detallado y configuración geométrica del segundo grupo de muros, adaptada de [5].
El esfuerzo a compresión máximo del concreto f'c empleado en los muros fue de 40 MPa y 28 MPa para el primer y segundo grupo de especímenes respectivamente. En la Tabla 5-13 se presentan las características principales del acero de refuerzo empleado en los muros ensayados.

Tabla 5-13. Características del acero de refuerzo.

<table>
<thead>
<tr>
<th>Tipo de refuerzo</th>
<th>fy (Mpa)</th>
<th>fu(Mpa)</th>
<th>fu/fy</th>
<th>εu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barras de refuerzo</td>
<td>540</td>
<td>635</td>
<td>1.18</td>
<td>11.20%</td>
</tr>
<tr>
<td>Malla HR 8mm</td>
<td>435</td>
<td>540</td>
<td>1.24</td>
<td>8.50%</td>
</tr>
<tr>
<td>Malla CD 8mm</td>
<td>540</td>
<td>605</td>
<td>1.12</td>
<td>4.10%</td>
</tr>
<tr>
<td>Malla HR 12mm</td>
<td>442</td>
<td>568</td>
<td>1.29</td>
<td>8.30%</td>
</tr>
<tr>
<td>Malla CD 12mm</td>
<td>552</td>
<td>619</td>
<td>1.12</td>
<td>4.00%</td>
</tr>
</tbody>
</table>
Los ensayos fueron realizados en un marco de reacción ubicado en el laboratorio del departamento estructural del Politécnico di Milano. Se utilizó un actuador con 1000 kN de capacidad y un máximo desplazamiento de 600 mm para la aplicación de la fuerza horizontal. Por su parte para la aplicación de la fuerza vertical se utilizó un actuador con capacidad de 600 kN. Para evitar el pandeo lateral de los paneles ensayados, el desplazamiento fuera del plano debido a la excentricidad accidental fue restringido por medio de elementos laterales. En la zona superior se ubicaban lectores de desplazamiento y tanto la fuerza horizontal como la fuerza vertical eran medidas por celdas de carga. En la Figura 5-26 se muestra la configuración de los ensayos y la ubicación de sus equipos.

![Componentes](image)

Figura 5-26. Configuración de los ensayos, adaptada de [5].

A continuación se describen los daños encontrados en el primer grupo de especímenes ensayados.

En la Fotografía 5-16 se presentan los daños encontrados en el muro B16R8-2, en los cuales se muestra las fotografías a) y b) con el patrón de grietas identificadas en la base del espécimen, en la fotografía c) se presenta el pandeo local de las barras de refuerzo longitudinal y en la fotografía d) se presenta la falla por fatiga el refuerzo de borde.
En la Fotografía 5-17 se presentan los daños encontrados en los muros B14HR8-2 y B14CD8-2, en los cuales se muestra la fotografía a) con el patrón de grietas identificadas en el primer especímen mencionado, en la fotografía b) se presenta la abertura de la malla de refuerzo, en la fotografía c) se muestra el patrón de grietas en el momento de la falla del segundo espécimen mencionado y en la fotografía d) se observa la falla por tensión de la malla electro soldada en la zona de borde.

En la Fotografía 5-18 se presentan los daños encontrados en los muros HR12C-1 y CD12C-1, en los cuales se muestra la fotografía a) con el patrón de grietas en la base después del colapso del primer muro mencionado, la fotografía b) se presenta el pandeo de las barras longitudinales, en la fotografía c) se observa el patrón de grietas después del colapso del segundo muro mencionado y en la fotografía d) se muestra la falla por tensión en la malla de refuerzo.

Fotografía 5-16. Fallas encontradas en el muro B16R8-2, adaptada de [5].

Fotografía 5-17. Fallas encontradas en los muros B14HR8-2 y B14CD8-2, adaptada de [5].
Fotografía 5-18. Fallas encontradas en los muros HR12C-1 y CD12C-1, adaptada de [5].

A continuación se presentan las curvas histeréticas que dieron como resultado de los diez primer muros ensayados, cada una de ellas relaciona la fuerza en el actuador con el desplazamiento en la zona superior de los especímenes (Ver desde la Figura 5-27 hasta la Figura 5-29).

Figura 5-27. Curva Histerética – Muros B16R8-1 y B16R8-2, adaptada de [5].
Figura 5-28. Curva Histerética – Muros B14HR8-1, B14HR8-2, B14CD8-1 y B14CD8-2, adaptada de [5].
El ensayo para el primer grupo de especímenes presentó los siguientes resultados:

Se evidencian mayores desplazamientos para los muros reforzados con mallas forjadas en caliente en comparación con los muros reforzados con mallas dobladas en frío, lo anterior se da para el mismo proceso de carga de los especímenes.

El colapso de los muros reforzados con malla doblada en frío es caracterizado por la presencia de grietas en la zona inferior del muro mientras que para los muros reforzados con malla forjada en caliente el patrón de grietas no es tan evidente. Esto implica que debido a la falta de ductilidad no es posible desarrollar grandes deformaciones plásticas en el espécimen.

Durante los ensayos algunas barras de las mallas fallaron. La falla de la malla forjada en caliente se caracterizó por el pandeo local de los elementos frente a la ausencia de
La falla de la malla doblada en frío se caracterizó por la ruptura del elemento frente a esfuerzos de tensión. Es importante resaltar que se presentó una mayor cantidad de fallas en las mallas dobladas en frío, lo cual demuestra que la falta de ductilidad del material tiene incidencia directa en la tipología de falla del elemento (frágil).

El colapso de los especímenes se relaciona siempre con una apertura de la malla en forma de “C”, esta configuración evidencia una reducción considerable del confinamiento, lo cual produce un aplastamiento temprano del concreto.

En la Tabla 5-14 se presenta las derivas máximas y las fuerzas cortantes máximas encontradas en cada uno de los especímenes respectivamente.

<table>
<thead>
<tr>
<th>Muro</th>
<th>Deriva</th>
<th>V max (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16R8-1</td>
<td>2.22%</td>
<td>339</td>
</tr>
<tr>
<td>B16R8-2</td>
<td>2.94%</td>
<td>340</td>
</tr>
<tr>
<td>B14HR8-1</td>
<td>2.38%</td>
<td>330</td>
</tr>
<tr>
<td>B14CD8-1</td>
<td>2.22%</td>
<td>340</td>
</tr>
<tr>
<td>B14HR8-2</td>
<td>2.38%</td>
<td>330</td>
</tr>
<tr>
<td>B14CD8-2</td>
<td>2.56%</td>
<td>357</td>
</tr>
<tr>
<td>HR12C-1</td>
<td>2.70%</td>
<td>525</td>
</tr>
<tr>
<td>CD12C-1</td>
<td>1.96%</td>
<td>580</td>
</tr>
<tr>
<td>HR12C-2</td>
<td>2.33%</td>
<td>555</td>
</tr>
<tr>
<td>CD12C-2</td>
<td>2.33%</td>
<td>575</td>
</tr>
</tbody>
</table>

A continuación se describen algunos de los daños encontrados en el segundo grupo de especímenes ensayados.
En la Fotografía 5-19 se presentan los daños encontrados en los muros B14HR8U y B14CD8S, en los cuales se muestra la fotografías a) con el patrón de grietas observado después del colapso del primer espécimen mencionado, en la fotografía 5-19 b) se muestra el desprendimiento del concreto de recubrimiento, en la fotografía 5-19 c) se presenta el patrón de grietas observado después del colapso del segundo espécimen mencionado y en la fotografía 5-19 d) se presenta la falla por fatiga el refuerzo de borde.

A continuación se presentan las curvas histeréticas que dieron como resultado de los 8 muros ensayados del segundo grupo, cada una de ellas relaciona la fuerza en el actuador con el desplazamiento en la zona superior de los especímenes (Ver la Figura 5-30 y la Figura 5-31)
Figura 5-30. Curva Histerética – Muros B14HR8S, B14HR8U, B14CD8S y B14CD8U, adaptada de [5].
El ensayo para el segundo grupo de especímenes presentó los siguientes resultados:

Los muros reforzados con malla forjada en caliente mostraron mayor ductilidad en comparación a los que se encontraban reforzados con mallas dobladas en frio. Para este caso los especímenes reforzados con la malla forjada en caliente presentaron una ductilidad comparable con el muro B16R8-2, el cual mostró la mejor ductilidad de los especímenes reforzados por medio de barras de acero ordinarias.

Los muros reforzados con mallas dobladas en frio desarrollaron grietas en la base del elemento, mientras que los paneles reforzados con mallas forjadas en caliente presentaron un patrón menos definido de figuración en la base. Este resultado es similar al encontrado en el primer grupo de muros ensayados.

Las mallas en “U” son aparentemente más eficientes. Esto es debido al alto confinamiento que le provee a la sección de concreto del elemento. Con esta configuración no se presentó
un pandeo local de los elementos frente a bajos niveles de cargas. Por otra parte se observó que dicha configuración evitó la apertura del acero de confinamiento.

En la Tabla 5-15 se presenta las derivas máximas y las fuerzas cortantes máximas encontradas en cada uno de los especímenes respectivamente.

<table>
<thead>
<tr>
<th>Muro</th>
<th>Deriva</th>
<th>V max (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14HR8S</td>
<td>2.86%</td>
<td>400</td>
</tr>
<tr>
<td>B14HR8U</td>
<td>3.45%</td>
<td>405</td>
</tr>
<tr>
<td>B14CD8S</td>
<td>2.13%</td>
<td>400</td>
</tr>
<tr>
<td>B14CD8U</td>
<td>2.17%</td>
<td>480</td>
</tr>
<tr>
<td>HR12S</td>
<td>2.78%</td>
<td>335</td>
</tr>
<tr>
<td>HR12U</td>
<td>2.94%</td>
<td>420</td>
</tr>
<tr>
<td>CD12S</td>
<td>1.43%</td>
<td>390</td>
</tr>
<tr>
<td>CD12U</td>
<td>2.04%</td>
<td>460</td>
</tr>
</tbody>
</table>

En conclusión se identifica que los muros estructurales pueden ser convenientemente reforzados con mallas de acero forjadas en caliente. En efecto, los especímenes reforzados con estas mallas mostraron unos grandes niveles de ductilidad, los cuales eran comparables con el refuerzo convencional de barras de acero.

Las mallas de acero forjadas en caliente pueden ser también utilizadas con el refuerzo convencional de barras de acero como elementos de confinamiento y suplemento para los esfuerzos de flexión.

El uso de mallas electro soldadas como estribos de confinamiento mostro ser una configuración efectiva, ya que limita el aplastamiento del concreto y el pandeo de las barras de refuerzo longitudinal. Usando esta nueva alternativa se planteara un detalle más simple del acero de refuerzo en las edificaciones que empleen muros de concreto reforzado como elementos estructurales.
Discusión y Conclusiones

Con base en lo presentado anteriormente, se observa que la capacidad de los muros esbeltos de concreto reforzado es relativamente sensible a la variación de los parámetros geométricos, detallamiento y niveles de carga axial. Se encuentra que la variabilidad en el espesor del muro tiene un impacto directo en la capacidad del mismo, ya que si éste es menor, por consiguiente la capacidad también lo es, no obstante es importante resaltar que dicho parámetro influye en el tipo de falla, ya que un espesor reducido podría generar pandeo fuera del plano para determinados niveles de carga axial. Cuando la relación de aspecto es reducida, disminuye a su vez la ductilidad del muro analizado, lo que conlleva a una menor capacidad de disipación de energía, y por ende una respuesta menos efectiva. Por otra parte como fue demostrado en los muros 6 y 8, la capacidad del muro aumenta cuando este cuenta con estribos cerrados de confinamiento conformando elementos de borde definidos, dicho aumento se ve representado principalmente en la ductilidad. Se evidencia también que ganchos de 135° presentan menor abertura frente a cargas cíclicas que los ganchos de 90°, lo cual posibilita un adecuado confinamiento del núcleo de concreto y por consiguiente mayores desplazamientos en la zona dúctil. Por último, como fue presentado en los primeros tres muros, el incremento en los niveles de carga axial, es relativamente proporcional al aumento de la capacidad lateral, no obstante, dicho incremento proporciona mayor rigidez al elemento, lo cual lo vuelve menos dúctil (este comportamiento fue analizado en el capítulo anterior, para los Análisis Paramétricos).
6 RESULTADOS Y DISCUSIÓN

En el siguiente capítulo se presenta la comparación entre la respuesta experimental de los muros escogidos presentados en el capítulo 5 (Casos de estudio) y la respuesta teórica de los mismos una vez aplicada la metodología planteada en el capítulo 4 (Modelo analítico para la evaluación de la capacidad). Para este caso fueron seleccionados cinco especímenes entre los cuales están; tres muros expuestos en *Hube et al (2014)*, un muro expuesto en *Dazio et al (2008)* y un muro expuesto en *Riva y Franchi et al (2001)*. Es importante resaltar que para generar los diagramas Momento – Curvatura que son presentados en este capítulo, se ha empleado el software de análisis de elementos en concreto reforzado CUMBIA (*Luis. A Montejo y Mevyn J. Kowalsky, 2007*).

6.1 Descripción de los muros seleccionados

En la Tabla 6-1 se presentan las principales características de los muros seleccionados para realizar la comparación entre el resultado experimental y la predicción numérica empleando la metodología descrita en el capítulo 4. Estos muros fueron escogidos debido a que presentan configuraciones diferentes de geometría, detallado del acero de refuerzo longitudinal y transversal, resistencia máxima a compresión f'c y relación de carga axial, lo cual facilita analizar algunos de los comportamientos estructurales que implican dicha variabilidad. Por otra parte, cada uno de los muros expuestos cuentan con gran parte de la información necesaria para desarrollar los modelos computacionales, solo en algunos casos puntuales fue necesario suponer características mecánicas del acero y del concreto.

Los muros 1, 2 y 3 son correspondientes a los especímenes W4, W6 y W9 respectivamente, presentados por *Hube et al (2014)*, el muro 4 es correspondiente al espécimen WSH4, presentado por *Dazio et al (2008)* y el muro 5 es correspondiente al espécimen HR12C – 1 presentado por *Riva y Franchi et al (2001)*.
6.2 Análisis de la longitud de plastificación

En la aplicación de la metodología expuesta a los muros previamente presentados, fue necesario seleccionar la longitud de plastificación que se ajustara a los resultados esperados. En el caso de los cuatro primeros especímenes, dicho parámetro fue presentado en sus respectivos artículos; por su parte en el muro 5 no se especificaba su longitud de plastificación. Con base en esto se emplearon algunas de las expresiones expuestas en el capítulo 2 de la presente tesis, esto con el fin de encontrar la dimensión adecuada para este parámetro. Para ello se utilizaron tres expresiones de diferentes autores, el método propuesto por Paulay (Paulay y Priestley, 1992), el método propuesto por Kowalsky (Kowalsky, 2001) y el método propuesto por Wallace (Wallace et al. 2004), arrojando como resultado una longitud de plastificación de 0.34 m, 0.60 m y 0.39 m respectivamente. Como se observa en la Figura 6-1, la respuesta última en la representación bilineal de la curva de capacidad generada por la metodología es relativamente sensible a la variación de este parámetro, ya que para un aumento del 53% de su magnitud, el desplazamiento último en la zona superior del muro se incrementa un 44% aproximadamente, lo que a su vez representa una mayor capacidad de disipación de energía y ductilidad del elemento. Para la predicción del muro 5 fue empleada la longitud de plastificación hallada por el método propuesto por Wallace, ya que con este valor el porcentaje de error fue cercano al 1%, en comparación a la longitud de plastificación hallada por el método de Kowalsky que presentaba un porcentaje de error cercano al 45%. Es importante resaltar que la metodología propuesta por los tres autores se basa en parámetros geométricos del elemento (longitud Lw y altura hw).

Tabla 6-1. Parámetros de los muros seleccionados.

<table>
<thead>
<tr>
<th>Muro</th>
<th>tw (mm)</th>
<th>Lw (mm)</th>
<th>hw (mm)</th>
<th>f’c (MPa)</th>
<th>ALR</th>
<th>pl (%)</th>
<th>pt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>700</td>
<td>1600</td>
<td>28</td>
<td>0.150</td>
<td>1.16</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>700</td>
<td>1600</td>
<td>28</td>
<td>0.150</td>
<td>1.34</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>700</td>
<td>1600</td>
<td>28</td>
<td>0.150</td>
<td>1.17</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>2000</td>
<td>4560</td>
<td>41</td>
<td>0.057</td>
<td>0.82</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>1200</td>
<td>2500</td>
<td>40</td>
<td>0.083</td>
<td>1.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>
como se puede observar, cuando es empleada la longitud de plastificación hallada con el método propuesto por Wallace, la curva de capacidad generada con la metodología, muestra una buena correspondencia con los valores obtenidos de resistencia y desplazamiento para la condición última.

6.3 **Influencia del espesor (tw) en la respuesta del elemento**

Para los primeros dos muros fue posible analizar la influencia que tiene el espesor tw en la curva de capacidad del elemento. Con base en este análisis se evidencia que el espesor es un parámetro determinante para aumentar o disminuir la capacidad de un muro de concreto reforzado tanto a nivel de resistencia como en cuanto a su ductilidad. Esto se demuestra ya que una reducción del espesor de un 25% podría disminuir la capacidad del muro en un 15%, y la rigidez elástica en un 11%. Por otra parte, dicho parámetro también afecta el desplazamiento último del espécimen ya que para esta reducción de espesor podría disminuir el desplazamiento en un 45% (Ver la Figura 6-2).
Figura 6-2. Influencia el espesor tw en la respuesta del elemento.

6.4 Comparación entre Momento-Curvatura experimental y teórico
El artículo que expone el muro 2 descrito en la Tabla 6-1 Hube et al (2014), presenta el diagrama Momento – Curvatura experimental del espécimen ensayado. En la Figura 6-3 se muestra la comparación entre dicha respuesta y el diagrama Momento – Curvatura teórico hallado por medio de un modelo computacional (Programa CUMBIA).

Figura 6-3. Comparación entre diagramas Momento – Curvatura teóricos y experimentales (Muro 2).
Se observa que la respuesta teórica para la condición última, muestra grandes diferencias con los valores registrados experimentalmente (es importante resaltar que para el modelo computacional desarrollado en este documento, a la deformación unitaria última del concreto se le asignó el valor de 0.010). Tal y como se menciona en el capítulo 5, este artículo desarrolla también resultados teóricos con base en un modelo de fibras. En este caso, el modelo aplicado a este muro arroja resultados de Momento último (M_u) de 192.5 kN·m, el cual en comparación con los resultados teóricos que arroja el modelo computacional desarrollado en esta tesis (194.5 kN·m) solo difiere en un 1% del resultado expuesto en el artículo.

Adicionalmente, este artículo desarrolla la metodología simplificada para hallar la curva de capacidad que se expone en la presente tesis; éste reporta la calibración para la longitud de plastificación que debiera emplearse en la metodología para hallar una respuesta última (V_u y Δu) similar a la obtenida por el ensayo experimental. Para ello, en principio fue aplicada la longitud de plastificación de 2.5 t_w propuesta por Takahashi et al (2013) a los resultados teóricos obtenidos por medio del modelo de fibras; con base en esto se reportó un resultado teórico del desplazamiento último (Δu) de 24.6 mm. Con el fin de corroborar la precisión de los resultados arrojados entre los dos modelos teóricos (modelo computacional utilizado en esta tesis y el modelo de fibras aplicado en el artículo), se empleó la misma longitud de plastificación arrojando resultados de desplazamiento último (Δu) de 21.5 mm, la cual evidencia un porcentaje de error del 12% (resultado aproximado). Teniendo en cuenta que la expresión para hallar el desplazamiento último (Δu) está en función de la longitud de plastificación L_p (2.5 t_w), la altura del muro (1750 mm), la curvatura de fluencia ϕ_y y la curvatura última ϕ_u, se concluye que la respuesta última en términos de curvatura última ϕ_u es aproximadamente igual para los dos modelos comparados, ya que al aplicarse la misma longitud de plastificación el desplazamiento último arrojó resultados aproximados (12% de porcentaje de error).

Como se presentó anteriormente, tanto el momento último (M_u) como la curvatura última (ϕ_u) son aproximadamente iguales para el modelo de fibras planteado en el artículo y el modelo computacional empleado en este documento. En este caso, se considera adecuado aplicar la longitud de plastificación propuesta por dicho artículo (4.5 t_w) para lograr una buena aproximación entre los resultados teóricos de la curva de capacidad y la respuesta histerética que se obtuvo experimentalmente, ya que para dicha longitud de plastificación,
en la aplicación de la metodología que se desarrolló en la presente tesis, se encontró una aproximación adecuada entre el desplazamiento último teórico y el desplazamiento último experimental (Ver la Tabla 6-4). No obstante, aún se mantiene el interrogante del por qué la gran diferencia entre la respuesta última del diagrama momento curvatura teórico y el experimental (Ver la Figura 6-3). Con base en esta cuestión se analiza la deformación unitaria última del concreto (εu,c), la cual es uno de los parámetros fundamentales para determinar la respuesta última en la relación Momento - Curvatura de un elemento de concreto reforzado. Como se mencionó anteriormente a este parámetro se le asignó el valor de 0.010, sin embargo, con fin de hallar un valor adecuado para alcanzar una respuesta aproximada entre lo teórico y lo experimental, se modificó este parámetro en el modelo computacional utilizado. En la Figura 6-4 se presenta la el diagrama Momento – Curvatura teórico con una deformación unitaria última del concreto (εu,c) igual a 0.02, el cual fue un valor que logro una buena aproximación para la comparación planteada.

![Diagrama Momento – Curvatura teórico y experimental con εu,c=0.02](image)

Figura 6-4. Comparación entre diagramas Momento – Curvatura teóricos y experimentales con εu,c=0.02 (Muro 2).

El valor de deformación unitaria última del concreto de 0.02, es un valor alto comparado con los valores utilizados en el diseño de edificaciones (0.003 y 0.004), no obstante, un adecuado detallado de confinamiento del núcleo de concreto, permite al elemento desarrollar este tipo de deformaciones. Para este caso el muro tiene estribos a dos ramas en las dos direcciones con barras de diámetro 5 mm espaciados cada 9 cm con la ausencia
de elementos de borde (Ver la Figura 5-6 – muro 6). En la Figura 6-5 se presenta un registro de deformaciones unitarias desarrolladas en el ensayo de los especímenes presentados en este artículo *Hube et al (2014)*. Como puede observarse algunas de las lecturas registradas en los ensayos experimentales presentan deformaciones unitarias que sobrepasan el 2%.

![Registro de deformaciones unitarias, adaptada de [3].](image)

Por último, si se emplea en el modelo computacional una deformación unitaria última en el concreto es de 0.02, la respuesta teórica y la experimentan lograrían una buena aproximación en cuanto a la relación Momento - Curvatura (Ver la Figura 6-4). En este caso es necesario emplear una longitud de plastificación igual a 2.0 tw para lograr una alta precisión entre la respuesta última de la curva de capacidad teórica y la respuesta histerética del muro ensayado.

6.5 Respuesta histerética vs. Representación bilineal

Desde la Figura 6-6 hasta la Figura 6-10 se presenta la comparación entre la curva de capacidad obtenida con la metodología expuesta y la curva de capacidad arrojada por los ensayos de los especímenes propuestos.
Figura 6-6. Comparación entre curvas de capacidad teóricas y experimental (Muro 1).

Figura 6-7. Comparación entre curvas de capacidad teóricas y experimental (Muro 2).
Figura 6-8. Comparación entre curvas de capacidad teóricas y experimental (Muro 3).

Figura 6-9. Comparación entre curvas de capacidad teóricas y experimental (Muro 4).
Figura 6-10. Comparación entre curvas de capacidad teóricas y experimental (Muro 5).

Desde Tabla 6-2 hasta la Tabla 6-4 se presentan los resultados teóricos (Rt) y experimentales (Re) con su respectiva comparación, en este caso la comparación se expresa como un porcentaje de error (Ver ecuación 37). Es importante acotar que en los artículos de los cuales fueron escogidos estos especímenes no fue presentado un reporte de energía disipada para los muros 1, 2, 3 y 4, y un reporte de la respuesta para el punto de fluencia (Vy y Δy) para el muro 5, por tal motivo no se muestra una comparación al respecto.

\[
\%E = \left| \frac{R_e - R_t}{R_e} \right| \times 100
\] \hspace{1cm} (37)
Donde la variable V_y es la fuerza cortante en la base del muro en el momento de la fluencia, V_u es la fuerza cortante en la base del muro en el momento de la falla, Δy es el desplazamiento en la zona superior del muro en el momento de la fluencia, Δu es el desplazamiento en la zona superior del muro en el momento de la falla y E la energía disipada.

Como puede observarse los resultados experimentales que hacen referencia al punto de fluencia (V_y y Δy) de los muros 1, 2 y 3, difiere en algunos casos con un porcentaje de error
hasta del 42%, según Hube et al (2014), dicho comportamiento es típico de las comparaciones de este estilo (Ver la Figura 5-13), el cual se argumenta en algunas suposiciones de modelación como lo son el confinamiento del concreto, recubrimiento del concreto, endurecimiento del acero, detallado del acero de refuerzo y longitud de plastificación para los casos donde se quiera analizar el momento de la falla. Por otra parte los porcentajes de error para los resultados que hacen referencia al momento de la falla (Vu y Δu), no superan el 20%, lo cual define que los resultados obtenidos por la metodología para este instante son aproximados y pueden reflejar un comportamiento semejante a los resultados experimentales.

Es significativo resaltar que los errores porcentuales para el muro 4 fueron inferiores al 12%, esto se le atribuye a la amplia cantidad de datos descriptivos presentados en el artículo, los cuales permitieron modelar con alta confiabilidad las propiedades del espécimen ensayado.

Para los otros casos fue necesario realizar diferentes suposiciones y adecuaciones al modelo computacional, ya que los programas empleados para estos análisis, no son lo suficientemente flexibles para permitir crear un modelo de detalle que represente fielmente la configuración y comportamiento del especímen; por otra parte, algunos de los artículos no cuentan con la información necesaria para desarrollar el modelo en su totalidad. Más allá de esto, aunque los porcentajes de error para el punto de la fluencia en el muro 4 son menores a los presentados por los tres muros anteriores, la respuesta en este instante continua mostrando menos precisión que la obtenida en el momento último (Vu y Δu), siendo esto coherente con el comportamiento presentado por el muro 1, 2 y 3. Para el caso del muro 4 se encontró una alta precisión en la predicción del desplazamiento último y fuerza cortante, evidenciándose en un porcentaje de error del 0% y 5% respectivamente.

Se observa que en el muro 5, el porcentaje de error más alto alcanzo valores del 18%, obteniendo resultados que son similares a la respuesta experimental del espécimen; aunque el artículo no reportó resultados para el punto de la fluencia, en la Figura 6-10 se evidencia que la predicción en este instante presenta una buena aproximación. Por otra parte se encontró una alta precisión en la predicción del desplazamiento último, evidenciándose en un porcentaje de error del 1%, cabe resaltar que la respuesta de este parámetro es relativamente sensible a la variación de la longitud plástica que sea empleada en los cálculos, tal y como se presentó anteriormente. La energía disipada hallada con base en la metodología expuesta, no presenta mayores diferencias en comparación con los
resultados experimentales reportados, ya que se encontró un porcentaje de error aproximadamente del 14%; dicho valor no supera el umbral del 20% demostrando así una buena precisión en el resultado.

Se ha identificado que en la metodología expuesta es importante definir el diagrama Momento – Curvatura característico de la sección crítica de los diferentes muros, el cual es el insumo base y se alimenta de la configuración de los parámetros principales para dicho elemento (parámetros geométricos, configuración del refuerzo, propiedades mecánicas de los materiales, entre otros). Si se cuenta con la información necesaria, la representación teórica de este fenómeno (excitación al elemento con carga lateral) será útil para ser empleada en análisis y posterior desarrollo de la metodología. No obstante dicho método también es sensible a la elección de la longitud plástica empleada en el cálculo del desplazamiento último, ya que para estos análisis existe una amplia gama de opciones propuestas por varios autores, sin embargo, no todas logran una precisión adecuada.
7 CONCLUSIONES

Como fue presentado a lo largo de este documento, la respuesta estructural de los muros esbeltos de concreto reforzado depende de diversos parámetros mecánicos, geométricos y detallado de refuerzo; interpretar cómo se comportan cada uno de ellos trabajando en conjunto, es la base de un adecuado diseño estructural. En el proceso de modelación y análisis de los resultados fue relevante entender como aporta cada parámetro a la respuesta del muro, para esto se consideró necesario realizar una análisis paramétrico sobre la respuesta Momento – Curvatura de un muro analizado. Con base en esto es importante resaltar cuan sensible es la capacidad de un muro si su espesor se modifica, la alta variabilidad que presenta la ductilidad de un elemento basándose en el detallado del acero de refuerzo o la influencia de la cuantía longitudinal y transversal en la rigidez del elemento. Con el fin de poder predecir el comportamiento de un muro de concreto reforzado, es necesario plantear diversas suposiciones con respecto a los parámetros que le competen, modelos constitutivos de los materiales, comportamiento de la deformación, longitud de plastificación, entre otros. Una vez entrelazadas estas variables (entendimiento de los parámetros principales y suposiciones estructurales) es viable plantear un modelo estructural que revele el comportamiento más aproximado a la realidad. En este caso se exhibieron comparaciones entre la metodología expuesta y algunos ensayos de especímenes hechos alrededor del mundo, los cuales no presentaron diferencias notorias para la respuesta estructural cuando el elemento es sometido a cargas horizontales. Para ello se plantea como una adecuada aproximación que los porcentajes de error no excedan el 20%; tal y como se presentó en el capítulo 6 de este informe la mayoría de parámetros comparados no excedieron este umbral. Particularmente, para el caso del momento de fluencia, se presentaron diferencias porcentuales superiores al 20% entre la respuesta estructural teórica y la experimental, sin embargo, dicho resultado se argumenta en diversas suposiciones planteadas para el desarrollo del modelo y posterior aplicación de la metodología.

Más allá de lo presentado anteriormente, se concluye que la metodología expuesta para hallar la curva de capacidad de un muro esbelto de concreto reforzado, logra captar con una adecuada aproximación los fenómenos intrínsecos de este elemento al estar sometido a fuerzas laterales, es útil para entender y analizar el comportamiento estructural y
posiblemente se pueda emplear para diseños de edificaciones con sus respectivas verificaciones posteriores basándose en análisis más avanzados.

Con respecto a la revisión de la literatura:

- La longitud de la rótula pastica influye considerablemente sobre la capacidad de rotación inelástica y por lo tanto, sobre la ductilidad del muro, por otra parte es posible calcular el espesor mínimo que debe tener un muro para evitar el pandeo fuera de plano a partir de la longitud de plastificación, la ductilidad por curvatura y la excentricidad. Finalmente se concluye que la generación de pandeo inelástico en un muro esbelto se encuentra más afectada por la longitud del muro que por la altura de éste y por la tensión residual que experimenta el acero de refuerzo ante una carga cíclica.

- La metodología para el diseño de muros estructurales en voladizo propuesta por los autores basada en el desplazamiento de fluencia, es posible utilizarla en la práctica ya que cuenta con la validación de diferentes análisis no lineales de los cuales se obtienen valores de cortante, ductilidad desplazamientos, entre otros muy similares a los resultados obtenidos por la dicha metodología, por otra parte es muy sencilla de llevar a cabo y puede ser una herramienta de gran utilidad para los análisis de muros estructurales en voladizo.

- El nivel de carga axial (ALR) tiene una influencia importante en la deformación, ductilidad y capacidad de los muros; ya que un aumento en el nivel de carga axial incide en una mayor capacidad, al mismo tiempo que la disipación de energía y ductilidad del elemento disminuye; sin embargo, el confinamiento está altamente sujeto a la configuración del refuerzo transversal por lo que aumentar simplemente la cuantía no genera mejores resultados en cuanto a disipación de energía y comportamiento estructural.

- Debido a que para el diseño de muros estructurales basado en desplazamiento son de gran utilidad los perfiles de deformación, se concluye que asumir una longitud de plastificación tiene un gran impacto en la relación entre los perfiles de deformación
realizados de manera analítica y los perfiles experimentales, por lo cual se recomienda usar una longitud de plastificación entre 0,33Lw y 0,5Lw. Los resultados del programa experimental muestran que asumir una deformación lineal es apropiado para el análisis en los elementos de borde, por otra parte los resultados experimentales verificaron que asumir una deformación máxima de 0,003 para el concreto en diseño es correcto para la mayoría de los casos.

Con respecto a los parámetros de los muros esbeltos de concreto reforzado:

- Al aumentar la cuantía longitudinal en un muro de concreto reforzado se aumenta a su vez la capacidad, no obstante, la rigidez aumenta, y por ende disminuye su ductilidad. Este no es un comportamiento adecuado ya que el muro pierde la capacidad de mantener un nivel constante de demanda durante un tiempo más prolongado antes de llegar a la falla, lo que puede ocasionar una falla frágil del elemento, lo cual en términos estructurales es inaceptable. Una posible solución para este escenario, es proveer al elemento de un adecuado confinamiento del núcleo de concreto.

- Al aumentar el espesor del muro se incrementa la capacidad y la ductilidad del elemento estructural, lo cual mejora el desempeño en la mayoría de los casos, puesto que el muro posee la capacidad de soportar una mayor demanda debido a un evento sísmico, al mismo tiempo que su ductilidad no se ve afectada, evidenciando así una falla de tipo dúctil, lo cual responde a un buen comportamiento estructural.

- Los muros más largos tienen una fluencia más temprana, y su curvatura última es menor, por lo tanto tienden a controlar las respuestas de la estructura en comparación a los muros que presentan longitudes más cortas.

- A medida que aumenta el nivel de carga axial al que se encuentra sometido el muro, la capacidad de este aumenta, mientras que la ductilidad disminuye considerablemente, lo cual no es un comportamiento deseable; este conducta es totalmente lógica ya que al realizar un símil con una columna, el incremento de la carga axial aumenta la capacidad de resistir momentos flectores causados por eventos sísmicos, al mismo
tiempo que ese sobre esfuerzo generado por el aumento de la carga axial provoca que se llegue a la falla más rápido, es decir que el elemento cuenta con menos ductilidad.

Con respecto a los casos de estudio:

- Tanto la capacidad como el desplazamiento de un muro es reducida cuando se incrementa el nivel de carga axial de 0.15 a 0.35 (el elemento presenta una mayor rigidez). Por otra parte se considera que el límite de carga axial adoptado por el código Chileno (0.35) no es adecuado para muros esbeltos de concreto reforzado sin presencia de elementos de borde con un adecuado confinamiento (Alarcón et al 2014).

- Se encuentra que la variabilidad en el espesor del muro tiene un impacto directo en la capacidad del mismo, ya que si éste es menor, por consiguiente la capacidad también lo es, no obstante es importante resaltar que dicho parámetro influye en el tipo de falla, ya que un espesor reducido podría generar pandeo fuera del plano para determinados niveles de carga axial.

- El decrecimiento de la relación de aspecto reduce tanto el desplazamiento último, como la capacidad de disipación de energía. Por otra parte el uso de un refuerzo vertical concentrado en los elementos de borde, incrementa la fuerza máxima lateral y el desplazamiento último (Hube et al 2014).

- La disminución del espaciamiento vertical del refuerzo horizontal de los elementos de borde, incrementa tanto la capacidad como la ductilidad de un muro esbelto de concreto reforzado, debido a que evitan el pandeo del refuerzo vertical ubicado en esta zona y adicionalmente dichos estribos pueden ayudar a confinar el núcleo de concreto que se ubica en los elemento de borde (Hube et al 2014).

- La reducción en la capacidad de deformación de un muro esbelto de concreto reforzado, depende directamente de la cantidad de refuerzo longitudinal que contenga el mismo. Este efecto es aún mayor si las barras de refuerzo longitudinal no cuentan con un adecuado detallamiento de los estribos de confinamiento (Dazio et al 2008).
- La capacidad del muro aumenta cuando éste cuenta con estribos cerrados de confinamiento conformando elementos de borde definidos, dicho aumento se ve representado principalmente en la ductilidad.

- Se identifica que los muros estructurales pueden ser convenientemente reforzados con mallas de acero forjadas en caliente. En efecto, los especímenes reforzados con estas mallas muestran grandes niveles de ductilidad, los cuales son comparables con el refuerzo convencional de barras de acero. Las mallas de acero forjadas en caliente pueden ser también utilizadas con el refuerzo convencional de barras de acero como elementos de confinamiento y suplemento para los esfuerzos de flexión (Riva y Franchi et al 2001).

Con respecto a la metodología expuesta:

- Para llevar a cabo la metodología es indispensable desarrollar el diagrama Momento – Curvatura de la sección crítica del elemento analizado. En este caso dicho diagrama fue obtenido por medio de programas computacionales que realizaban el proceso iterativo presentado en el capítulo 4. Sin embargo, la variabilidad del detallado del acero de refuerzo y en general la configuración del elemento estructural, podría llegar a ser una limitante, ya que no todos los programas cuentan con un amplio desarrollo herramientas que permitan captar en su totalidad las diversas configuraciones que podrían presentarse en un elemento estructural.

- Al aplicar la metodología expuesta se obtiene como resultado una curva de capacidad bilineal que representa la respuesta estructural de un muro de concreto reforzado. Esta presentación limita el análisis del elemento, ya que solo que cuenta con dos estados de comportamiento a lo largo de la aplicación de la carga. Por dicho motivo esta metodología se considera una representación simplificada de la respuesta estructural de un muro esbelto de concreto reforzado.

- Varios autores proponen diferentes modelos constitutivos de los materiales utilizados en el concreto reforzado (concreto simple, concreto confinado y acero). Sin embargo, cada teoría se basa en suposiciones diferentes, las cuales deberían ser interpretadas
adecuadamente para encontrar su aplicabilidad al ejercicio propuesto; esto con fin de poder representar fielmente el fenómeno que se desee modelar.

- Para el planteamiento del momento de la falla del muro de concreto reforzado, es indispensable hallar una adecuada longitud de plastificación, ya que de este parámetro depende el desplazamiento último del elemento. Tal y como fue presentado en el capítulo 2 de la presente tesis, varios autores proponen diferentes métodos para hallar dicho parámetro, sin embargo, como se muestra en el capítulo 6, no todos los métodos llegan al mismo resultado. Esto es argumentado en las diversas hipótesis en las que se basan estos métodos, ya que para su desarrollo son empleados parámetros mecánicos, parámetros geométricos y en algunos casos las solicitudes del elemento. Es de resaltar que la respuesta última del elemento estructural es relativamente sensible a la variabilidad de este parámetro.

- Los resultados experimentales que hacen referencia al punto de fluencia (Vy y Δy), difieren en algunos casos con un porcentaje de error hasta del 42%, según Hube et al (2014) (Ver la Figura 5-13), dicho comportamiento es típico de las comparaciones de este estilo, el cual se argumenta en algunas suposiciones de modelación como lo son el confinamiento del concreto, recubrimiento del concreto, endurecimiento del acero, detallado del acero de refuerzo y longitud de plastificación para los casos donde se quiera analizar el momento de la falla.

- Según lo expuesto en el capítulo 6, la metodología propuesta logra obtener una adecuada aproximación con respecto al momento último del elemento estructural (Vu y Δu), ya que no se observa valores de porcentajes de error que superen el umbral del 20%. El parámetro que presentó mayor precisión fue el desplazamiento último Δu alcanzando valores en algunos caso del 1%.

- La metodología expuesta es útil para analizar diferentes configuraciones de muros de esbeltos de concreto reforzado, interpretar comportamientos estructurales con la variación de parámetros relevantes en dichos elementos, calibrar y/o comparar la respuesta teórica y experimental cuando se es sometido el elemento a cargas
horizontales y podría emplearse como un procedimiento simplificado para el diseño estructural contemplando cargas sísmicas.
8 REFERENCIAS BIBLIOGRÁFICAS

