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Abstract
Radioelectric spectrum management is a concern for today’s world, mainly 
due to the misuse that has been given to this resource through the years, 
especially on the UHF band. To address this problem, a testbed for sub-Nyquist 
Wideband Spectrum Monitoring was built, that includes a web interface to 
remotely measure occupancy of the UHF band.

To achieve the above, an RF interface that allows tuning UHF frequencies 
with an instantaneous bandwidth of 95 MHz was built. Afterwards, a Random 
Demodulator was connected, and then an embedded system performed sub-
-Nyquist sampling and spectrum recovery. The embedded system connected 
to an information system that serves a web page, through which remote users 
can perform UHF band monitoring. 

Experimental results showed that spectrum sensing can be achieved by using 
different algorithms on certain sparse spectra. In addition, the aforementioned 
web interface allowed simultaneous user connections, in order to perform 
independent measurements by sharing a hardware subsystem.

Keywords: Compressed sensing; sampling methods; information systems; 
system-on-chip; analog processing circuits; web services.
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Banco de pruebas para monitoreo Sub-Nyquist  
de espectro de banda ancha 

Resumen
La gestión del espectro radioeléctrico es una preocupación en la actualidad, hecho 
derivado, ante todo, del mal uso que se ha dado a este recurso a través de los años, 
especialmente en la banda de UHF. Para afrontar este problema, se construyó 
un banco de pruebas para la supervisión del espectro de banda ancha a través de 
muestreo sub-Nyquist, el cual incluye una interfaz web para medir de forma remota 
la ocupación de la banda UHF. Para lograr esto, se construyó una interfaz RF que 
permitiría sintonizar frecuencias UHF con un ancho de banda instantáneo de 95 
MHz. Después, se conectó un demodulador aleatorio; y luego, un sistema embebido 
realizaría el muestreo sub-Nyquist y la recuperación del espectro. Este se conectaría, 
a su turno, con un sistema de información que sirve una página web, a través de 
la cual los usuarios remotos pueden realizar la supervisión de la banda de UHF. 
Los resultados muestran que la detección del espectro se puede lograr mediante 
diferentes algoritmos en ciertos espectros dispersos. Además, la interfaz web permitió 
que existiesen conexiones de usuario simultáneas, de tal manera que se realizaran 
mediciones independientes compartiendo el subsistema de hardware.

Palabras clave: detección  compresiva, métodos de muestreo, sistemas de informa-
ción, sistema en un solo chip, circuitos de procesamiento analógico, servicios Web.

Banco de testes para monitoramento sub-Nyquist  
de espectro de banda larga

Resumo
O gerenciamento do espectro radioelétrico é uma preocupação na atualidade, fato 
derivado, inicialmente, do mau uso que se tem dado a esse recurso através dos anos, 
especialmente na banda de UHF. Para enfrentar esse problema, construiu-se um 
banco de testes para a supervisão do espectro de banda larga por meio de amostra-
gem sub-Nyquist, a qual inclui uma interface web para medir de forma remota a 
ocupação da banda UHF. Para isso, construiu-se uma interface RF que permitiria 
sintonizar frequências UHF com uma largura de banda instantânea de 95 MHz. Em 
seguida, ligou-se um demodulador aleatório; logo, um sistema embebido realizaria 
a amostragem sub-Nyquist e a recuperação do espectro. Este se ligaria, por sua 
vez, com um sistema de informação que serve um site, através do qual os usuários 
remotos podem realizar a supervisão da banda de UHF. Os resultados mostram que a 
detecção do espectro pode ser conseguida mediante diferentes algoritmos em certos 
espectros dispersos. Além disso, a interface web permitiu que existissem conexões 
de usuário simultâneas, de tal maneira que se realizassem medidas independentes 
compartilhando o subsistema de hardware.

Palavras-chave: detecção compressiva, métodos de amostragem, sistemas de 
informação, sistema em um chip, circuitos de processamento analógico, serviços web.
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INTRODUCTION

The radioelectric spectrum is not being used efficiently. The main reason for this is 
that frequency bands are assigned to primary users (PU), which do not allow any 
other service to use their bands, even though they are only used occasionally [1]. An 
example of misuse of the spectrum are television bands: Those ones are not being used 
anymore for analog television transmission, therefore they are in a re-licensing process 
for digital TV [2] and WRAN services [3].

The main goal of cognitive radio (CR) is to provide an RF system capable of 
knowing its environment and adjusting its parameters accordingly [4]. This is a 
promising solution for the misuse of the radioelectric spectrum in the next years. One 
of the most important components of a CR is the spectrum sensing function, which 
detects spectral holes and primary users in the environment. This information is then 
used by the radio system to decide which band to use and transmit the data.

Preliminary work on cognitive radio (CR) focused on its technology modeling, 
simulation, and implementation. Its main issues consider three levels: Spectrum sensing 
[5][6][7], spectrum access [8], and hardware implementation [5]. So, the current trends 
in ultra-wideband wireless communications have increased the complexity of the CR 
systems, particularly its hardware receivers.

Some studies investigating CR have been carried out on hardware experiments 
and prototypes, focusing in spectrum sensing techniques such as analog-to-
information converters (AIC), modulated wideband converters (MWC), and  
multi-coset samplers (MC). 

Many approaches have been proposed on designing and implementing AIC 
subsystems, such as theories and simulations where the demodulation, as well as 
the mixer components, define the primary design specifications. A transistor-level 
simulation for an AIC is described in [9], which uses a mixer based on a Gilbert cell 
and CMOS 0.13µm fabrication technology, achieving a sampling frequency of 100 
MSample/s. On the other hand, [10] presents a behavioral model which considers the 
dominant parameters for a detailed design to implement an AIC, with a bandwidth of 
40 MHz. In [11], the authors present a working prototype of AIC, which is based on 
a commercial digital signal processor (DSP) board that has a clock frequency of 160 
MHz; however, the AIC bandwidth is 400 kHz. Very-large-scale integration (VLSI) 
design level allows to research also for implementation parameters of AIC with this 
technology: In this regard, [12] presents a VLSI design of an AIC with CMOS 28 nm 
fabrication technology, which can sample RF signals up to 6 GS/s. In [13], the authors 
present an AIC built with integrated circuits (IC), which can sample signals with a 
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bandwidth of up to 236 MHz: Its design specifies a printed circuit board (PCB), a 
commercial IC, and a chipset designed with 0.45 μm InP HBT (Indium-Phosphide 
heterojunction bipolar transistor) technology.

Regarding the MWC subsystems, there are three relevant works related to hardware 
implementation. A recent contribution of [14], concerning to a hardware prototype, 
proposes a system based on a FPGA, a commercial ADC, and environments such as 
Matlab and Labview; it has an unknown total bandwidth occupancy of up to 200 MHz 
and Nyquist rate of 6 GHz. On the other hand, a doctoral thesis developed at Stanford 
University [15] presents the VLSI implementation of an MWC receiver, which is able 
to detect four 1.4 MHz channels up to 900 MHz. Finally, in [16] the authors describe 
the Xampling platform based on MWC with support to sample signals with 2 GHz 
Nyquist rate, 120 MHz spectrum occupancy, and a sampling rate of 280 MHz.

Regarding MC-based sampling systems, the main findings show how it has gained 
popularity. A MC sampler prototype based on discrete integrated circuits is presented in 
[17], where an FPGA can sample signals with a bandwidth of 100 kHz and 10 sampling 
channels. In [18], the authors present an implementation of a MC-based sub-Nyquist 
sampling scheme for a surveillance radar with 1.1 GHz bandwidth; however, no details 
of the hardware implementation parameters are offered. Moreover, an algorithm for 
broadband spectrum sensing based on sFFT is presented [19], which uses two sampling 
channels: Its implementation was carried out by using the software-defined radio 
(SDR) platform USRP [15], with a bandwidth up to 900 MHz. In [20], an algorithm to 
perform cooperative wideband spectrum sensing (and its hardware implementation) is 
presented, based on MC sampling: It is robust to noise, overcoming the performance of 
the algorithm presented in [19]. On the other hand, another doctoral thesis is presented 
by the Georgia Institute of Technology [19], which describes an asynchronous multi-
rate sampling system, similar to the MC sampling: Its hardware implementation can 
achieve a bandwidth up to 18 GHz.

Recent evidence suggests that CR receivers can monitor wide spectra by sampling 
at very low rates, such as [21], which the authors describe as “the first hardware 
implementation results”, achieving a sampling frequency of 200 MHz and resolving 
an instantaneous bandwidth of 2GHz by using two ADCs, an FPGA demo board, and 
other commercial integrated circuits. 

As for complete testbed implementations for CR, all the studies reviewed so 
far suffer from the commercial availability of implementations about sub-Nyquist 
sampling systems, especially as testbeds for the academic and scientific community. 
Nevertheless, the embedded platform BEE2 (Berkeley Emulation Engine 2, developed 
at the University of California) for high performance computing is presented in [22] as a 
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framework with 5 high performance FPGA, for designing high-end reconfigurable and 
complex computers. This platform was used by [23] to implement a spectrum sensing 
system, however, this is not based on sub-Nyquist sampling. On the other hand, an 
FPGA-based platform, called CRUSH by the authors [24], was conceived as a testbed 
for spectrum sensing systems. CRUSH is also based on the SDR platform USRP [25], 
and only supports NSS (Narrowband Spectrum Sensing).

Considering that testbeds are very useful tools to assess the performance of diffe-
rent CR algorithms and techniques, and the fact that many authors offer no explanation 
about the detailed design for the hardware implementation and electronic support 
systems, the main contribution of the work presented in this paper is a configurable 
testbed with the necessary circuits to capture real wireless signals by using sub-Nyquist 
sampling. Hence, our system would be at the same level as the ones implemented at 
Israel Technology Institute and California University [22][26]. In addition, this testbed 
would allow students to make different experiments with cutting-edge technology 
communication devices, to change configuration parameters for tuning the system, 
or testing new algorithms. Finally, remote access to our testbed opens the door for 
collaborative work between various universities, and thus it could have a greater impact 
in the academic community.

The paper is organized as follows: Section 1 describes the testbed architecture, 
starting with the RF system and analog frontend, the hardware/firmware configuration 
for the SoC-FPGA, and the information system. Section 2 presents the experiments 
performed to the testbed: Verification results for both the analog frontend and the SOC/
FPGA system, and tests for the web server. In Section 3, a conclusion is drawn, and 
acknowledgements are given in Section 4.

1. TESTBED ARCHITECTURE

In this section, different components of the sensing platform are described, starting 
with the RF components (antenna, and RF interface). After that, the analog front 
end between the RF sub-system and the SOC-FPGA will be presented. The chapter 
ends with the description of the information management service for the spectrum 
sensing platform.

1.1  RF System

An antenna that would allow to capture wideband signals in the UHF frequency 
range (between 300 MHz and 3 GHz) with a good gain was needed. The M-Series 
Ultra Base Station antenna [27] was a great option for our requirements, since it 
covers the frequency range from 25 MHz to 6 GHz in obstructed non-line-of-sight 
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(NLOS) environments, and it has omnidirectional detection. shows the Voltage 
Standing Wave Ratio (VSWR) for the Super-M Ultra Base Station antenna: It is 
lower than 2.0 from frequencies greater than 25 MHz, making detection possible 
for this frequency range [27].

Figure 1. Super-M Ultra Base Station VSWR
Source: [27].

For the radio frequency (RF) interface, an analog system that did not limit our 
bandwidth with a built-in low pass filter (LPF), like most commercial devices, was 
needed. Hence, the Myriad RF board [28] was selected: It is a low cost universal radio 
development platform, based on LMS6002DFN transceiver (). This board can receive 
incoming signals between 0.3 and 2.8 GHz, and down-convert them to baseband 
with a bandwidth of 14 MHz in normal operation. This board allows the developer 
to bypass the built-in lowpass-filters with a simple configuration, and to increase the 
bandwidth to 95 MHz.

Figure 2. Myriad-RF board
Source: [28].
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This board has two SMA connectors for the antenna interface, and it is equipped 
with pin headers for power supply, reference clock, analog I/Q input/output, and SPI 
interface connections. It contains everything needed to connect it with baseband 
chipsets or FPGAs, allowing the user to set parameters such as central frequency, gain, 
bandwidth, or sampling rates. 

1.2  Architecture of Designed AIC

An Analog-to-Information Converter (AIC) based on Random Demodulator (RD) was 
designed by using block diagram in [29] [9].

Figure 3. AIC based on RD
Source: Prepared by the authors.

In , x(t) is a signal which is representable and compressible in Fourier basis; 
ψn (t) = e jωnt ); pc (t) is a pseudo-random square wave with chipping rate of BW 
Hz, where BW is the bandwidth of x(t); and h(t) is the impulse response of an 
anti-alias low-pass filter. Then, Spectral Reconstruction block has to solve the 
Compressed Sensing (CS) problem stated in equation (1).

 1 min subject to 
∈
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Where ∈ Ná   is the estimated sparse vector, ∈ My    is the vector contai-
ning the sub-Nyquist samples, and ×∈ M NÈ   is the measurement matrix which 
is computed according to equation (2).
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Designed AIC can recover signals with BW=100 MHz by using a sub-Nyquist rate 
of R=4 MHz, which leads to a downsampling ratio of N/M=25. It was implemented 
by using off-the-shelf analog components and a SoC FPGA-based board. In this case, 
mixer and anti-alias filter were constructed by using an integrated Gilbert cell and a first 
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order low-pass filter, respectively. On the other hand, generation of , analog to digital 
conversion, and spectral reconstruction were implemented by means of the ADC-SoC 
board, by taking advantage of both FPGA and HPS portions of Cyclone V chip [30][31].

Mixer circuit performs multiplication of x(t) and pc(t), and it was implemented by 
using a Gilbert cell built from the HFA-3101 high-speed transistor [32]. shows designed 
Gilbert cell.

Mixer output

RF input

PN input

HFA3101
Figure 4. Designed Gilbert Cell

Source: Prepared by the authors.

In, biasing circuit was not included for the sake of simplicity [32]. Nonetheless, 
to perform mixing, x(t) and pc(t) are required to be low voltage differential signals, 
since mixer has an approximate gain of 12 ×. In addition, to feed compressed signal  
into ADC in ADC-SoC board, it is necessary to convert the differential signal from 
mixer output to single-ended, and to perform low-pass filtering. Both operations were 
accomplished by using circuit in.

Figure 5. Circuit for Differential to Single-ended Conversion and Low-pass Filtering
Source: Prepared by the authors.



43Testbed for Sub-Nyquist Wideband Spectrum Monitoring

Revista Ingenierías Universidad de Medellín, 19(37) • Julio-Diciembre de 2020 • pp. 35-58 • ISSN (en línea): 2248-4094

Circuit in was built from the operational amplifier ADA-4807 [33], where con-
version from differential to single-ended is performed with unity gain, and the output 
stage is a first-order low-pass filter with transfer function given in equation (3).

 ( ) 8
1

8 10 1−=
× +

H s
s

 (3)

From equation (3) it can be observed that cut-off frequency of filter is  
_ 2≈f c  MHz, therefore sub-Nyquist rate can be up to R=4 MHz. Finally, DC-blocking 

capacitors were used to isolate bias from mixer.

SoC-FPGA chip was used to implement the digital sub-system of designed AIC. 
FPGA-side was used to manage ADC and to generate a PN sequence, and HPS-side 
was used to manage circuit on FPGA and to execute spectrum recovery algorithms.  
shows the implemented circuit on FPGA-side.

Figure 6. Circuit for AIC on FPGA-side of SoC-FPGA 
Source: Prepared by the authors.

Circuit in is composed of six systems: Phase-Locked Loop (PLL), Maximal Length 
Linear-Feedback Shift Register (MLFSR), Dual Clock First In First Out (DCFIFO) 
circuit, on-chip Random Access Memory (RAM), Avalon slave [34], and Control 
Circuit. PLL is used to generate two clock signals of 100 MHz and 4 MHz; 100 MHz 
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clock signal is used for synchronization of MLFSR, DCFIFO, on-chip RAM and 
HPS-To-FPGA interface [31]; and 4 MHz signal is used to synchronize external ADC 
chip. MLFSR is 9-bit wide, and uses primitive polynomial in p(x) = x9 + x5 + 1 [35] 
to generate PN sequence. DCFIFO allows transfer of samples from ADC to on-chip 
RAM by using two clock domains. Avalon slave serves as gateway between FPGA-side 
and HPS-side, through which HPS can start a capture operation and read acquired 
sub-Nyquist samples. Finally, Control Circuit manages operation of AIC by using one 
4-state Finite State Machine (FSM), whose ASM chart is shown in .

Figure 7. ASM Chart for Control FSM 
Source: Prepared by the authors.
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FSM operates along with three counters lat_cnt, rd_cnt, and wr_cnt; five flip-flop 
synchronizers for clock domain crossing; and one combinational circuit to control 
write operations of on-chip RAM. Operation of FSM is described as follows: In IDLE 
state, FSM waits for a capture operation, which is triggered when start=1. Then, it 
enters into Latency state, where it enables MLFSR and waits for 12-cycle latency 
of AD9254 ADC [36] by using lat_cnt: This ensures synchronization between pc

 (t) 
signal and captured vector  for proper RD operation [9] [37]. Once latency passes, FSM 
enters into Capture state, where samples from ADC are written into DCFIFO as long 
samples from DCFIFO are written into on-chip RAM: This operation is controlled 
by means of rd_cnt, wr_cnt, and is_fifo_rdempty flag from DCFIFO. Finally, capture 
end is signaled by done_flag in DONE state, after which FSM returns to IDLE state. 

Regarding software for our AIC implementation, first we wrote a C program to 
achieve low level access to FPGA-side hardware through HPS-To-FPGA interface, 
and retrieve vector y from RD. Then, we made a Python implementation of spectrum 
reconstruction algorithm Compressive Sampling Matching Pursuit (CoSaMP) to solve 
the CS problem in equation (1) [38]. 

1.3  Information Management Service

We designed and implemented a web application to manage the testbed data. This app 
allows the users to observe the captured spectra for configuring different parameters 
like bandwidth or central frequency, and for uploading different sensing algorithms 
to the embedded system.

The information management service has two main components: The web server, 
and the embedded sensing client. The main architecture of this system is shown in.

Figure 8. Global Architecture of the Information Management Service
Source: Prepared by the authors.
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The functioning parameters for our system to work correctly are listed below:

• 32768-points spectra storage capacity.

• Easy visualization/download of historical data.

• Capable of uploading different sensing algorithms to the embedded sensing client.

• Ability to configure different parameters such as central frequency, bandwidth, 
capture period and spectral resolution.

• Compatible with the embedded system technology.

It was decided to use Python to develop both the web server and the embedded 
sensing client, for its compatibility with web applications and embedded systems [39]. 
A web server was implemented to interact with the human users and the embedded 
sensing client. In this regard, it was decided to use Flask [40], a Python framework 
used in web applications development, to implement our server. 

The web server has four main tasks: Two of them are oriented to the interaction 
with the human client, and the others are focused on the embedded sensing client. The 
web server tasks overview is presented in.

Figure 9. Web Server tasks Sorted by Type of Client
Source: Prepared by the authors.

All of the data needed by the web server are stored in a database with three 
tables: The first one is used to store the spectrum data, the second one is used for the 
configuration parameters, and the third stores the human user’s information. Also, every 
spectrum captured by the embedded platform is stored, along with another intrinsic 



47Testbed for Sub-Nyquist Wideband Spectrum Monitoring

Revista Ingenierías Universidad de Medellín, 19(37) • Julio-Diciembre de 2020 • pp. 35-58 • ISSN (en línea): 2248-4094

parameters such as central frequency, bandwidth, frequency resolution, and timestamp. 
All the frequency components are stored as a text string separated by commas.  shows 
the spectrum table of the database. 

Table 1. Spectrum Table for the Web Server Database

Spectrum

ID INTEGER

DFT MEDIUMTEXT

Central frequency INTEGER

Bandwidth INTEGER

Frequency resolution INTEGER

Timestamp TIMESTAMP
Source: Prepared by the authors.

The configuration parameters must stay still, unless someone changes them; for 
that reason, they are stored in another table of the database. These data are overwritten 
every time someone updates any parameter. The member “Pending updates” is used as 
a flag to check if the current sensing algorithm is up to date in the embedded system 
or not.  shows the configuration data table of the database.

Table 2. Configuration Data Table for the Web Server Database

ConfigData

ID INTEGER

Central frequency INTEGER

Bandwidth INTEGER

Frequency resolution FLOAT

Capture period INTEGER

Current algorithm MEDIUMTEXT

FFT points INTEGER

Pending updates MEDIUMTEXT

timestamp TIMESTAMP
Source: Prepared by the authors.

The last table of our database is used to store basic information of the web 
application users. This information is used to demand a login of the user before he 
or she updates any configuration parameter and, therefore, to have some control over 
who can access the system. Stored information of human users is shown in . The login 
password is hashed before it is saved (using SHA-256), so the security of the users is 
not compromised.
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Table 3. User Data Table for the Web Server Database 
Spectrum

ID INTEGER

Username MEDIUMTEXT

Password MEDIUMTEXT

Email MEDIUMTEXT

Source: Prepared by the authors.

The web server has a graphic user interface (GUI) to interact with the human 
clients using a web browser. It was developed using mostly HTML, but we some Flask 
utilities were also used to implement the web forms.

The main page of our interface allows the client to see or download every spectrum 
captured by the embedded sensing client. The plotted spectrum data must be selected 
by date, starting by the year and finishing by the hour in which they were captured.  
shows the GUI for the spectrum sensing visualization. This information can be accessed 
by anyone interested without restriction, and every single spectrum captured by the 
sensor can be downloaded in CSV format and imported from Matlab.

Figure 10. Spectrum Visualization GUI for the Web Application
Source: Prepared by the authors.

Other important page in our web application allows the user to change the configu-
ration of the embedded sensing client using a simple user interface. The configuration 
page shown in  permits the user to change the central frequency, desired bandwidth, 
spectral resolution, sensing period, and spectrum sensing algorithm.
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Figure 11. Spectrum Sensing Configuration GUI for the Web Application
Source: Prepared by the authors.

Every user must be logged in before he or she can change any of the parameters 
shown in . This action is performed in the login page, shown in . This page allows the 
user to create an account if he or she does not have one already.

Figure 12. Login GUI for the Web Application
Source: Prepared by the authors.

Embedded platform performs spectrum sensing by means of a Python program 
that constantly sends every spectrum captured to the web server. This program also 
updates the sensing parameters and sensing algorithms using polling synchronization, 
which allows the embedded client to work correctly from anywhere in the world without 
having a public IP, just an Internet connection to communicate with the web server. 
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There are two periodic Python tasks running on the embedded platform using 
timers. The first one updates the sensing parameters, and the second one obtains the 
current spectrum and sends it to the web server. Both algorithms are shown in .

Figure 13. Flow Charts for the Embedded Platform Processes
Source: Prepared by the authors.

The parameter update timer is executed every 2 seconds. In every iteration, it 
requests the current parameters and saves them into a text file. The spectrum sensing 
timer is executed periodically, depending on the sensing time parameter. Each time 
the spectrum sensing timer is triggered, it asks FPGA for the current spectrum, then 
saves it in a JSON format, and sends it to the web server.

2. TESTBED VERIFICATION RESULTS

This section describes a set of tests that were performed to prove the correct operation 
of the built testbed and its sub-systems. First, AIC to verify the spectrum recovery of 
sparse signals; after that, the spectrum monitoring capabilities of testbed were verified, 
and finally, responsiveness of server to clients was measured.

2.1 AIC verification results

Designed AIC was tested by using a measurement window of 125 μs, which leads to 
values for M and N of 500 and 12500, respectively. In addition, a multi-tone signal 
with frequencies of 4.17 MHz, 14.19 MHz, 25.02 MHz and 35.36MHz was used as a 
test vehicle. This signal was fed into the AIC, and then M=500 samples were acquired 
and stored in y vector. 
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Figure 14. Spectrum of Multitone Signal and Recovered Spectrum

Source: Prepared by the authors.

Top of shows spectrum of test signal and bottom shows recovered spectrum when 
using CoSaMP algorithm. Results in  show that CoSaMP did it well recovering support 
of α: This can be verified when calculating average squared error, which amounts 
to 0.0005897302. Hence, this well-known algorithm was able to perform spectral 
reconstruction from samples acquired by our mixed-signal hardware.

Finally,  shows synthesis results for the FPGA-side circuit in  when implemented on 
the Cyclone V device of ADC-SoC board [30][31]. Results in  demonstrate that digital 
hardware for designed AIC fits on a low-end SoC-FPGA chip, providing a complete 
low-cost sub-Nyquist sampling solution for compressible signals.

Table 4. Synthesis Results of AIC Hardware

Parameter Value
Adaptive Logic Modules 1959 / 15880 (12 %)
Dedicated Logic Registers 2445 / 31760 (8 %)
Block Memory Bits 1628672 / 2764800 (59 %)
PLLs 1 / 5 (20 %)
Operating Frequency (MLFSR clock) 125 MHz
Operating Frequency (ADC clock) 300 MHz

Source: Prepared by the authors.

2.2  Spectrum monitoring capabilities

The testbed can perform spectrum monitoring around any frequency of UHF band with 
an instantaneous bandwidth of 100 MHz. This allowed to perform a large amount of 
measurements on this band; however, these results were narrowed down to demonstrate 
the correct operation of testbed. 
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Figure 15. Spectrum for Colombian HD-TV Channels Caracol (473 MHz) and RCN (479 MHz) 
Source: Prepared by the authors.

shows spectrum measurement around frequency 473 MHz, where two Colombian 
HD-TV channels reside. From this  it is possible to observe two typical DVB-T2 spectral 
shapes, corresponding to TV channels Caracol (473 MHz) and RCN (479 MHz), whose 
spectrum occupancy could be monitored by using our testbed [41].

shows spectrum measurement around frequency 2655 MHz, where Long Term 
Evolution (LTE) downlink in band 7 resides [42], in this case, for carrier Claro in 
Colombia. The figure also depicts a typical LTE spectral shape for a channel with 
15-MHz bandwidth [42].

Figure 16. Spectrum for LTE Downlink in Band 7 of Carrier Claro in Colombia (2655 MHz)
Source: Prepared by the authors.
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2.3  Web server traffic tests

The web server described in section 1 can be used by many people around the world 
to experiment with different sensing algorithms, and to observe the historical spectral 
data. Nevertheless, the web application is not aimed at handling high traffic or hundreds 
of requests at the same time. Some tests were performed using the Jmeter software 
[43] to analyze the performance of the web server when executing the following tasks:

• Watching spectral data.

• Configuring sensing parameters.

• Storing spectral data.

Watching spectral data is the most demanding task of the web server because it 
must find the desired spectrum (32.768-long) in the database according to the selected 
date, retrieve it to the browser, and plot it. Two experiments were performed to test 
the latency of this task. In the first one, there was only one client requesting the data 
300 times. In the second one, 10 simultaneous clients were configured, each of them 
requesting 30 plots. Results of both experiments are shown in , which shows that the 
latency of the web server is a little higher than 8 seconds when 10 users are trying to 
watch the spectral data at the same time. If only one person is accessing the application, 
the latency is reduced to 0.86 seconds.

Table 5. Performance test for plotting spectral data.

#samples Avg. Min. Max. Std. Dev. Error % Throughput Received kB

1 client 300 860 829 1033 21.38 0.00 % 1.2/sec 2542.76

10 clients 300 8471 881 9498 875.62 0.00 % 1.1/sec 2484.51
Source: Prepared by the authors.

The performance of the web server when logging in and updating the sensing 
parameters for the spectrum sensing was also tested. Therefore, tests were performed 
for one user performing 500 operations, and 10 simultaneous users performing 100 
operations each ( ).

Table 6. Performance Test for Log in and Updating Parameters

#samples Avg. Min. Max. Std. Dev. Error % Throughput Received kB

1 client Logging in 500 52 49 86 3.87 0.00 % 16.6/sec 70.73

1 client Upd. params 1000 7 6 26 1.3 0.00 % 33.2/sec 136.21

10 clients Logging in 1000 309 51 448 46.89 0.00 % 17.1/sec 73.05

10 clients Upd. params 2000 265 8 407 46.64 0.00 % 34.2/sec 140.47
Source: Prepared by the authors.
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shows that this operation is a lot faster than watching spectral data, since it only 
takes about 52 ms to login one client, and 309 ms when ten clients are trying to do so at 
the same time. The times are shorter for updating parameters: Only 7 ms for updating 
one client, and 265 ms when ten people try to update parameters at the same time. Is 
worth to mention that ten people updating parameters at the same time probably would 
generate misbehaviors in the embedded sensing client.

The final test performed on the web server aimed to check how long did it take to 
store a spectrum captured by the embedded sensing client in the database. Only one 
experiment for this parameter was performed, since there will only be one embedded 
sensing client in our system. It can be concluded from , which shows the results of 
this experiment, that storing in database is a very fast operation for our server, since 
it only takes 72 ms (average) to store a 32768-long spectrum.

Table 7. Performance Test for Database Storing

#samples Avg. Min. Max. Std. Dev. Error % Throughput Received 
kB

1 client 500 72 34 107 5.96 0.00% 13.6/sec 2.13
Source: Prepared by the authors.

3. CONCLUSION

A testbed that constitutes a complete sub-Nyquist spectrum monitoring tool that can 
be used by researchers, spectrum management authorities, and hobbyists to carry out 
monitoring and research tasks was built. It is the first of its kind in Colombia, and 
shares unique features with a small group of tools around the world. On the other hand, 
the aforementioned testbed includes a sub-Nyquist AIC that can be used to recover 
sparse signals with a bandwidth of 100 MHz, and according to reviewed literature, it 
is the first one with such bandwidth which was built from off-the-shelf components. 
Finally, this testbed allows remote users to use custom algorithms, and to perform 
either spectrum monitoring or recovery of sparse signals.
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[13] M. Wakin et al., “A Nonuniform Sampler for Wideband Spectrally-Sparse Environments”, 
IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, n.° 3, pp. 516–529, Sep. 2012, DOI: 10.1109/
JETCAS.2012.2214635.

[14] D. Cohen, S. Tsiper, and Y. C. Eldar, “Analog-to-Digital Cognitive Radio: Sampling, 
Detection, and Hardware”, IEEE Signal Process. Mag., vol. 35, n.° 1, pp. 137–166, 2018, 
DOI: 10.1109/MSP.2017.2740966.

[15] D. J. K. Adams, “A Practical Implementation of the Modulated Wideband Converter 
Compressive Sensing Receive Architecture”, Stanford University, 2016.

[16] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to Digital at 
Sub-Nyquist Rates”, IET Circuits, Devices & Systems, vol. 5, n.° 1, pp. 8-20, January 2011, 
DOI: 10.1049/iet-cds.2010.0147.

[17] Zhang Jingchao, Liu Peizhuo, Fu Ning, and Peng Xiyuan, “Prototype design of multicoset 
sampling based on compressed sensing”, in 12th IEEE International Conference on 
Electronic Measurement & Instruments (ICEMI), 2015, pp. 1303–1308, DOI: 10.1109/
ICEMI.2015.7494524.

[18] M. Yaghoobi, B. Mulgrew, and M. E. Davies, “An efficient implementation of the low-
complexity multi-coset sub-Nyquist wideband radar electronic surveillance”, in 2014 Sensor 
Signal Processing for Defence (SSPD), Sep. 2014, pp. 1-5, DOI: 10.1109/SSPD.2014.6943320.

[19] H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi, “GHz-wide sensing and decoding 
using the sparse Fourier transform”, in IEEE INFOCOM 2014 - IEEE Conference on Computer 
Communications, Apr. 2014, pp. 2256-2264, DOI: 10.1109/INFOCOM.2014.6848169.

[20] A. López-Parrado and J. Velasco-Medina, “Cooperative Wideband Spectrum Sensing Based 
on Sub-Nyquist Sparse Fast Fourier Transform”, IEEE Trans. Circuits Syst. II Express Briefs, 
vol. 63, n.° 1, pp. 39-43, 2016, DOI: 10.1109/TCSII.2015.2483278.

[21] A. B. Korucu, O. Cakar, Y. K. Alp, G. Gok, and O. Arikan, “Compressive Digital Receiver: 
First hardware implementation results”, in 2018 26th Signal Processing and Communications 
Applications Conference (SIU), May 2018, pp. 1-4, DOI: 10.1109/SIU.2018.8404634.

[22] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: A high-end reconfigurable computing 
system”, IEEE Des. Test Comput., vol. 22, n.° 2, pp. 114-125, Feb. 2005, DOI: 10.1109/
MDT.2005.30.

[23]  a. Tkachenko, D. Cabric, and R. W. Brodersen, “Cognitive Radio Experiments using 
Reconfigurable BEE2”, in 2006 Fortieth Asilomar Conference on Signals, Systems and 
Computers, 2006, pp. 2041-2045, DOI: 10.1109/ACSSC.2006.355125.

[24] G. Eichinger, K. Chowdhury, and M. Leeser, “CRUSH: Cognitive radio universal software 
hardware”, Proc. - 22nd Int. Conf. F. Program. Log. Appl. FPL 2012, pp. 26-32, 2012, DOI: 
10.1109/FPL.2012.6339237.

http://doi.org/10.1109/JETCAS.2012.2214635
http://doi.org/10.1109/JETCAS.2012.2214635
http://doi.org/10.1109/MSP.2017.2740966
http://doi.org/10.1049/iet-cds.2010.0147
http://doi.org/10.1109/ICEMI.2015.7494524
http://doi.org/10.1109/ICEMI.2015.7494524
http://doi.org/10.1109/SSPD.2014.6943320
http://doi.org/10.1109/INFOCOM.2014.6848169
http://doi.org/10.1109/TCSII.2015.2483278
http://doi.org/10.1109/SIU.2018.8404634
http://doi.org/10.1109/MDT.2005.30
http://doi.org/10.1109/MDT.2005.30
http://doi.org/10.1109/ACSSC.2006.355125
http://doi.org/10.1109/FPL.2012.6339237


57Testbed for Sub-Nyquist Wideband Spectrum Monitoring

Revista Ingenierías Universidad de Medellín, 19(37) • Julio-Diciembre de 2020 • pp. 35-58 • ISSN (en línea): 2248-4094
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