Mostrar el registro sencillo del ítem

Síntesis y caracterización de interfase de heterojuntura In(O;OH)S/AgInS2

dc.creatorVallejo, Williamspa
dc.creatorDíaz Uribe, Carlosspa
dc.creatorArredondo, Carlos Andrésspa
dc.creatorLuna, Mario Albertospa
dc.creatorHernández, Johannspa
dc.creatorGerardo Gordillospa
dc.date.accessioned2017-06-15T22:05:20Z
dc.date.available2017-06-15T22:05:20Z
dc.date.created2014
dc.identifier.citationVallejo, W., Díaz Uribe, C., Arredondo, C., Luna, M., Hernández, J., & Gordillo, G. (2014). Synthesis and characterization of In(O;OH)S/AgInS2 interface heterojunction. Revista Tecnura, 18, 30-40spa
dc.identifier.issn0123921X
dc.identifier.urihttp://hdl.handle.net/11407/3430
dc.descriptionEn este trabajo presentamos estudios complementarios de películas delgadas de In(O;OH)S depositadas sobre películas delgadas de AgInS2 para fabricar un sistema capa absorbente/capa buffer utilizado en celdas solares tipo tándem o celdas de juntura simple. Como se demostró en trabajos anteriores realizados por los autores, las capas de AgInS2 crecieron por coevaporación de los metales precursores en un proceso de dos etapas; y las películas delgadas de In(O:OH)S se depositaron por baño químico. Las medidas de rayos X indican que las películas de AgInS2 crecen con estructura tipo calcopirita y las de In(O:OH)S con estructura policristalina. Las películas de AgInS2 presentan conductividad tipo P, y de las medidas de transductancia se encontró un coeficiente de absorción alto (mayor a 104 cm-1), y un gap de 1.95 eV; las películas de In(O:OH)S presentaron un gap de 3.01 eV; el análisis morfológico indica que bajo estas condiciones de síntesis, las películas de In(O:OH)S recubren completamente la capa absorbente de AgInS2 . Finalmente, en este trabajo se aplicó la ecuación de Avrami-Erofeev para estudiar la tasa de crecimiento de las películas delgadas de In(O:OH)S sobre el substrato de AgInS2 . Los resultados indican que el sistema desarrollado puede utilizarse en celdas solares de juntura simple o multijuntura.spa
dc.descriptionIn this work, we presented some complementary studies for In(O,OH)S thin films deposited on AgInS2 thin films to fabricate a new system absorbent-layer/ buffer-layer to be used in tandem and/or in one-junction solar cells. As showed in previous works carried out for us, AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process; and In(O,OH)S thin films were deposited by Chemical Bath deposition. X-ray diffraction measurements indicated that AgInS2 thin film grown with chalcopyrite structure; and In(O,OH)S films grown with polycrystalline structure. The AgInS2 thin films presented p-type conductivity, and from transductance measurements it was found a high absorption coefficient (greater than 104 cm−1) and an energy band gap of 1.95 eV; and In(O,OH)S thin films presented Eg about 3.01 eV; morphological analysis indicated that under this synthesis conditions, In(O,OH) S thin films coated completely the AgInS2 absorber layer. Finally, the Avrami-Erofeev equation was used in this work to study In(O,OH)S thin film growth rate on AgInS2 substrate. Results indicate that the developed system can be used in single-junction and multiple junction solar cells.spa
dc.language.isospa
dc.publisherUniversidad Distrital Francisco Jose de Caldasspa
dc.relation.isversionofhttp://revistas.udistrital.edu.co/ojs/index.php/Tecnura/article/view/9240/10492spa
dc.sourceTecnuraspa
dc.subjectVentana ópticaspa
dc.subjectAgInS2; In(O:OH)Sspa
dc.subjectCapa bufferspa
dc.subjectCapa absorbentespa
dc.subjectPelícula delgadaspa
dc.subjectCeldas solaresspa
dc.subjectAbsorber layer thin filmspa
dc.subjectAgInS2spa
dc.subjectBuffer layerspa
dc.subjectIn(O,OH)Sspa
dc.subjectOptic windowspa
dc.subjectSolar cellsspa
dc.titleSynthesis and characterization of In(O;OH)S/AgInS2 interface heterojunctionspa
dc.titleSíntesis y caracterización de interfase de heterojuntura In(O;OH)S/AgInS2spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.publisher.programIngeniería en Energíaspa
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doiDOI: http://doi.org/10.14483/udistrital.jour.tecnura.2014.DSE1.a02
dc.publisher.facultyFacultad de Ingenieríasspa
dc.creator.affiliationVallejo, William; Universidad del Atlánticospa
dc.creator.affiliationDíaz Uribe, Carlos; Universidad del Atlánticospa
dc.creator.affiliationArredondo, Carlos Andrés; Universidad de Medellínspa
dc.creator.affiliationLuna, Mario Alberto; Universidad de Medellínspa
dc.creator.affiliationHernández, Johann; Universidad Distrital Francisco José de Caldasspa
dc.creator.affiliationGerardo Gordillo; Universidad Nacional de Colombiaspa
dc.relation.ispartofesTecnura. Vol. 18 - Special Edition Doctorate 2014, pp. 30-40spa
dc.relation.referencesAlbor, M., Aguilar, J., González, M., & Ortega, C. G. (2007). Photoluminescence studies of alcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique, Thin Solid Films, 515(31), 6272–6275.spa
dc.relation.referencesArredondo, C., & Gordillo, G. (2010). Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation. Physica B: Condensed Matter, 405, 3694-3699.spa
dc.relation.referencesArredondo, C., Vallejo, W., Hernández, J., & Gordillo, G. (2012). In (O, OH) S/AgInS2 absorbent layer/ buffer layer system for thin film solar cells. 38th IEEE Photovoltaic Specialists Conference (PVSC), 001988-001991.spa
dc.relation.referencesAsenjo, B. et al. (2007). Study of CuInS2 /buffer/ZnO solar cells, with chemically deposited ZnS-In2S3 buffer layers. Thin Solid Films, 515(15). 6036-6040.spa
dc.relation.referencesBarreau, N., Marsillac, S., Albertini, D., & Bernede, J. (2002). Structural, optical and electrical properties of β-In2 S3-3xO3x thin films obtained by PVD. Thin Solid Films. 403, 331-334.spa
dc.relation.referencesBayon, R. et al. (1989). Preparation of Indium Hydroxy Sulfide Inx (OH)ySz Thin Films by Chemical Bath Deposition. Journal of the Electrochemical Society. 145(8), 2775-2779.spa
dc.relation.referencesBayon, R., & Herrero, J. (2000). Structure and morphology of the indium hydroxy sulphide thin films. Applied Surface Science. 58(1-2), 49-57.spa
dc.relation.referencesBhattacharya, R., Ramanathan, K., Gedvilas, L., & Keyes, B. (2005). Cu (In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn–Cd–S(O,OH), and CdS buffer layers. Journal of Physics and Chemistry of Solids. 66(11), 1862-1864.spa
dc.relation.referencesContreras, M. et al. (2003). ZnO/ZnS(O,OH)/Cu(In,Ga) Se2/Mo solar cell with 18.6% efficiency. 3rd World Conference on Phorovoltaics Energy Conversion, Osaka. Japan.spa
dc.relation.referencesEnnaoui, A. et al. (2005). New Chemical Route for the Deposition of ZnS Buffer Layers: Cd-freeCuInS2-based thin film solar cells with efficiencies above 11%. 20th European Photovoltaic Solar Energy Conference.spa
dc.relation.referencesFroment, M., & Lincot, D. (1995). Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors. Electrochimica Acta. 40(10). 1293-1303.spa
dc.relation.referencesGoetzberger, A., Hebling, C., & Schock, H.-W. (2003). Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports. 40(1), 1-46.spa
dc.relation.referencesGracia, M., Rojas, F., & Gordillo, G. (2005). Morphological and optical characterization of SnO2: F thin films deposited by spray pyrolysis. 20th European PV Solar Energy Conference, 1874-1877.spa
dc.relation.referencesGreen, M. et al. (2014). Solar cell efficiency tables (version 43). Progress in Photovoltaics: Research and Applications. 22(1), 1–9.spa
dc.relation.referencesHariskos, D., Spiering, S., & Powalla, M. (2005). Buffer layers in Cu (In,Ga)Se2 solar cells and modules. Thin Solid films. 480, 99-109.spa
dc.relation.referencesHuang, C. et al. (2001). Study of Cd-free buffer layers using Inx (OH, S) y on CIGS solar cells. Solar Energy Materials & Solar Cells. 69(2), 131-137.spa
dc.relation.referencesLarina, L. et al. (2003). Thin film CIGS-based solar cells with an In-based buffer layer fabricated by chemical bath deposition. 3rd World Conference on Photovoltaic Energy and Conversion. 1, 531- 534spa
dc.relation.referencesLee, C. et al. (2012). Design of energy band alignment at the Zn1−xMgxO/Cu (In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells. Physical Chemistry Chemical Physics. 14, 4789-4795.spa
dc.relation.referencesLoferski, J. et al. (s. d.). RF-sputtered CuInSe2 thin films.13th IEEE photovoltaic specialists Conference, 190.spa
dc.relation.referencesLokhande, C. et al. (1999). Chemical bath deposition of indium sulphide thin films: preparation and characterization. Thin Solid Films, 340(1-2), 18-23.spa
dc.relation.referencesMcEvoy, A., Markvart, T., & Castañer, L. (2013). Solar Cells: Materials, Manufacture and Operation. Second Edition. The Netherlands. Elsevier, 2, 35-45.spa
dc.relation.referencesNaghavi, N. et al. (2006). From CdS to Zn(S, O, OH): A better understanding of chemical bath deposition parameters and cells properties using electrodeposited CuIn(S,Se)2 and coevaporated Cu(In,Ga)Se2 absorbers. 21st European Photovoltaic Solar Energy Conference, Dresden, 1843.spa
dc.relation.referencesO’Brien, P., & McAleese, J. (1998). Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. Journal of Materials Chemistry, 8(11), 2309–2314.spa
dc.relation.referencesRoth, R., Parker, H., & Brower, S. (1973). Synthesis of mercury bismuth sulfide HgBi2S4. Materials Research Bulletin, 8(7), 859-862 Sandoval Paz, M. et al. (2005). Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique, Thin Solid Films, 472(1-2), 5-10.spa
dc.relation.referencesSankapal, B., Sartale, S., Lokhande, C., & Ennaoui, A. (2004). Chemical synthesis of Cd-free wide band gap materials for solar cells, Solar Energy aterials & Solar Cells. 83(4), 447-458.spa
dc.relation.referencesSharma, R. P. (1995). Influence of annealing in vacuum on opto-electronic characteristics of solution grown AgInSe2 films. Indian Journal of Pure & Applied Physics, 33, 711.spa
dc.relation.referencesUeno, Y., Kojima, Y., Sugiura, T., & Minoura, H. (1990). Electrodeposition of AgInSe2 films from a sulphate bath. Thin Solid Films. 189(1), 91-101.spa
dc.relation.referencesVallejo, W., Clavijo., & J. Gordillo, G. (2010). CGS Based Solar Cells with In2 S3 Buffer Layer Deposited by CBD and Coevaporation. Brazilian Journal of Physics, 40(1), 30-37.spa
dc.relation.referencesVallejo, W., Hurtado, M., & Gordillo, G. (2010). Kinetic study on Zn (O, OH)S thin films deposited by chemical bath deposition. Electrochimica Acta, 55(20), 5610-5616.spa
dc.relation.referencesWang, W. et al. (2012). Synthesis of CuInSe2 monodisperse nanoparticles and the nanorings shape evolution via a green solution reaction route. Materials Science in Semiconductor Processing. 15(5), 467-471.spa
dc.relation.referencesYoshinory, E., & Hamakawa. N. (1995). Formation and Properties of AgInSe2 Thin Films deposited from Alloy Chunks. Japanese Journal of Applied Physics. 34(1) 3260-3265.spa
dc.relation.referencesYousfi, E. et al. (2000). Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells, Thin Solid Films, 361, 183-186.spa
dc.relation.referencesZhai, R. et al. (2007). Kinetic studies on CaWO4 thin films by chemical bath deposition. Journal of Physics D: Applied Physics. 40, 4039.spa
dc.identifier.eissn22487638
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem