Mostrar el registro sencillo del ítem

dc.creatorAcelas, Nancy Y.spa
dc.creatorLópez, Dianaspa
dc.creatorMondragón, Fanorspa
dc.creatorTiznado, Williamspa
dc.creatorFlórez, Elizabethspa
dc.date.accessioned2017-06-15T22:05:22Z
dc.date.available2017-06-15T22:05:22Z
dc.date.created2013
dc.identifier.citationAcelas, N. Y., López, D., Mondragón, F., Tiznado, W., & Flórez, E. (2013). Topological analysis of tetraphosphorus oxides (P4O6+ n (n= 0–4)). Journal of molecular modeling, 19(5), 2057-2067.spa
dc.identifier.issn16102940
dc.identifier.urihttp://hdl.handle.net/11407/3460
dc.descriptionQuantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n = 0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui function. A classification of the P-O bonds formed in all structures was done according to the coordination number in each P and O atoms. It was found that there are five P-O bond types and these are distributed among the five phosphorus oxides structures. Results showed that there is good agreement among the evaluated properties (length, bond order, density at the critical point, and disynaptic population) and each P-O bond type. It was found that regardless of the structure in which a P-O bond type is present the topological and geometric properties do not have a significant variation. The topological parameters electron density and Laplacian of electron density show excellent linear correlation with the average length of P-O bond in each bond type for each structure. From the Fukui function analysis it was possible to predict that from P4O6 until P4O8 the most reactive regions are basins over the P.spa
dc.language.isoeng
dc.publisherSpringer Berlin Heidelbergspa
dc.relation.isversionofhttps://link.springer.com/article/10.1007/s00894-012-1633-7spa
dc.sourceJournal of Molecular Modelingspa
dc.subjectAtoms in moleculesspa
dc.subjectDFTspa
dc.subjectThe Fukui functionspa
dc.subjectTopological analysisspa
dc.titleTopological analysis of tetraphosphorus oxides (P4O6+n (n = 0–4))spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programTronco común Ingenieríasspa
dc.identifier.doiDOI: 10.1007/s00894-012-1633-7
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.creator.affiliationAcelas, Nancy Y.; Universidad de Antioquiaspa
dc.creator.affiliationLópez, Diana; Universidad de Antioquiaspa
dc.creator.affiliationMondragón, Fanor; Universidad de Antioquiaspa
dc.creator.affiliationTiznado, William; Universidad Andres Bellospa
dc.creator.affiliationFlórez, Elizabeth; Universidad de Medellínspa
dc.relation.ispartofesJournal of Molecular Modeling. May 2013, Volume 19, Issue 5, pp 2057–2067spa
dc.relation.referencesSalvadó MA, Pertierra P (2008) Theoretical study of P2O5 polymorphs at high pressure: hexacoordinated phosphorus. Inorg Chem 47(11):4884–4890spa
dc.relation.referencesEngels B, Soares Valentim AR, Peyerimhoff SD (2001) About the chemistry of phosphorus suboxides. Angew Chem Int Ed 40(2):378–381spa
dc.relation.referencesDimitrov A, Ziemer B, Hunnius W-D, Meisel M (2003) The first ozonide of a phosphorus oxide—preparation, characterization, and structure of P4O18. Angew Chem Int Ed 42(22):2484–2486spa
dc.relation.referencesKlapötke TM (2003) P4O18—the first binary phosphorus oxide ozonide. Angew Chem Int Ed 42(30):3461–3462spa
dc.relation.referencesCarbonnière P, Pouchan C (2008) Vibrational spectra for P4O6 and P4O10 systems: theoretical study from DFT quartic potential and mixed perturbation-variation method. Chem Phys Lett 462(4–6):169–172spa
dc.relation.referencesMielke Z, Andrews L (1989) Infrared spectra of phosphorus oxides (P4O6, P4O7, P4O8, P4O9 and P4O10) in solid argon. J Phys Chem 93(8):2971–2976spa
dc.relation.referencesJansen M, Moebs M (1984) Structural investigations on solid tetraphosphorus hexaoxide. Inorg Chem 23(26):4486–4488spa
dc.relation.referencesBeattie IR, Ogden JS, Price DD (1978) The characterization of molecular vanadium oxide (V4O10), an analog of phosphorus oxide (P4O10). Inorg Chem 17(11):3296–3297spa
dc.relation.referencesSharma BD (1987) Phosphorus(V) oxides. Inorg Chem 26(3):454–455spa
dc.relation.referencesValentim ARS, Engels B, Peyerimhoff SD, Clade J, Jansen M (1998) A comparative study of the bonding character in the P4On (n = 6–10) series by means of a vibrational analysis. J Phys Chem A 102(21):3690–3696spa
dc.relation.referencesMowrey RC, Williams BA, Douglass CH (1997) Vibrational analysis of P4O6 and P4O10. J Phys Chem A 101(32):5748–5752spa
dc.relation.referencesLohr LL (1990) An ab initio characterization of the gaseous diphosphorus oxides P2Ox (x = 1–5). J Phys Chem 94(5):1807–1811spa
dc.relation.referencesMoussaoui Y, Ouamerali O, De Maré GR (2003) Properties of the phosphorus oxide radical, PO, its cation and anion in their ground electronic states: comparison of theoretical and experimental data. Int Rev Phys Chem 22(4):641–675spa
dc.relation.referencesButler JE, Kawaguchi K, Hirota E (1983) Infrared diode laser spectroscopy of the PO radical. J Mol Spectrosc 101(1):161–166spa
dc.relation.referencesKanata H, Yamamoto S, Saito S (1988) The dipole moment of the PO radical determined by microwave spectroscopy. J Mol Spectrosc 131(1):89–95spa
dc.relation.referencesDyke JM, Morris A, Ridha A (1982) Study of the ground state of PO + using photoelectron spectroscopy. J Chem Soc, Faraday Trans 78(12):2077–2082spa
dc.relation.referencesZittel PF, Lineberger WC (1976) Laser photoelectron spectrometry of PO-, PH-, and PH2-. J Chem Phys 65(4):1236–1243spa
dc.relation.referencesNoury S, Krokidis X, Fuster F, Silvi B (1997) TopMod Packagespa
dc.relation.referencesFlkiger P, Lthi HP, Portmann S, Weber J (2008) MOLEKEL 5.3. Molekel homepage. http://www.cscs.ch/molekel (accessed 20 April 2010)spa
dc.relation.referencesBader R (1990) Atoms in molecules. Oxford University Press, New York, A Quantumspa
dc.relation.referencesPopelier PLA (1996) MORPHY, a program for an automated "atoms in molecules" analysis. Comput Phys Commun 93:212–240spa
dc.relation.referencesGeerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873spa
dc.relation.referencesChermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154spa
dc.relation.referencesAyers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534spa
dc.relation.referencesGazquez J (2008) Perspectives on density functional theory Of chemical reactivity. J Mex Chem Soc 52(1):3–10spa
dc.relation.referencesYang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863spa
dc.relation.referencesAyers PW, Levy M (2000) Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity" by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360spa
dc.relation.referencesPerdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694spa
dc.relation.referencesYang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175spa
dc.relation.referencesAyers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018spa
dc.relation.referencesAyers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303spa
dc.relation.referencesParr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050spa
dc.relation.referencesFuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quantum Chem 107:37–45spa
dc.relation.referencesAyers PW (2006) Can one oxidize an atom by reducing the molecule that contains It? Phys Chem Chem Phys 8:3387–3390spa
dc.relation.referencesBartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–1151spa
dc.relation.referencesMelin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019spa
dc.relation.referencesCardenas C, Ayers PW, Cedillo A (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134(17):174103–174113spa
dc.relation.referencesFlores-Moreno R (2009) Symmetry conservation in Fukui functions. J Chem Theory Comput 6(1):48–54spa
dc.relation.referencesMartínez J (2009) Local reactivity descriptors from degenerate frontier molecular orbitals. Chem Phys Lett 478(4–6):310–322spa
dc.relation.referencesTiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109(14):3220–3224spa
dc.relation.referencesFuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6(5):1470–1478spa
dc.relation.referencesOsorio E, Ferraro MB, Oña OB, Cardenas C, Fuentealba P, Tiznado W (2011) Assembling small silicon clusters using criteria of maximum matching of the Fukui functions. J Chem Theory Comput 7(12):3995–4001spa
dc.relation.referencesFlorez E, Tiznado W, Mondragón F, Fuentealba P (2005) Theoretical study of the interaction of molecular oxygen with copper clusters. J Phys Chem A 109(34):7815–7821spa
dc.relation.referencesTiznado W, Ona OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) Theoretical study of the adsorption of H on Sin clusters, (n = 3–10). J Chem Phys 123(21):214302spa
dc.relation.referencesTiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) Theoretical study of the structure and electronic properties of Si3On − and Si6On − (n = 1–6) clusters. Fragmentation and formation patterns. J Chem Theory Comput 5(9):2265–2273spa
dc.relation.referencesKohout M (2011) DGrid 4.6. Radebeulspa
dc.relation.referencesPopelier PLA (2000) Atoms in molecules. An introduction. Pearson Education, Harlowspa
dc.identifier.eissn09485023
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem