Sistema experto para enfermedades en cultivos basado en emparejamiento de patrones en grafos: una propuesta
Expert System for Crop Disease based on Graph Pattern Matching: A proposal
Compartir este ítem
Fecha
2016-12-31Autor
Lasso Sambony, Emmanuel
Corrales, Juan Carlos
Citación
Metadatos
Mostrar el registro completo del ítemDocumentos PDF
Resumen
Para la agroindustria, las enfermedades en cultivos constituyen uno de los problemas más frecuentes que generan grandes pérdidas económicas y baja calidad en la producción. Por otro lado, desde las ciencias de la computación, han surgido diferentes herramientas cuya finalidad es mejorar la prevención y el tratamiento de estas enfermedades. En este sentido, investigaciones recientes proponen el desarrollo de sistemas expertos para resolver este problema haciendo uso de técnicas de minería de datos e inteligencia artificial, como inferencia basada en reglas, árboles de decisión, redes bayesianas, entre otras. Además, los grafos pueden ser usados para el almacenamiento de los diferentes tipos de variables que se encuentran presentes en un ambiente de cultivos, permitiendo la aplicación de técnicas de minería de datos en grafos, como el emparejamiento de patrones en los mismos. En este artículo presentamos una visión general de las temáticas mencionadas y una propuesta de un sistema experto para enfermedades en cultivos, basado en emparejamiento de patrones en grafos. For agroindustry, crop diseases constitute one of the most common problems that generate large economic losses and low production quality. On the other hand, from computer science, several tools have emerged in order to improve the prevention and treatment of these diseases. In this sense, recent research proposes the development of expert systems to solve this problem, making use of data mining and artificial intelligence techniques like rule-based inference, decision trees, Bayesian network, among others. Furthermore, graphs can be used for storage of different types of variables that are present in an environment of crops, allowing the application of graph data mining techniques like graph pattern matching. Therefore, in this paper we present an overview of the above issues and a proposal of an expert system for crop disease based on graph pattern matching.