Show simple item record

dc.creatorChen X.spa
dc.creatorKarpenko A.spa
dc.creatorLopez-Acevedo O.spa
dc.date.accessioned2017-12-19T19:36:41Z
dc.date.available2017-12-19T19:36:41Z
dc.date.created2017
dc.identifier.issn24701343
dc.identifier.urihttp://hdl.handle.net/11407/4251
dc.description.abstractThe DNA double helix is a versatile building block used in DNA nanotechnology. To potentiate the discovery of new DNA nanoscale assemblies, recently, silver cations have been introduced to pair DNA strands by base-Ag+-base bonding rather than by Watson-Crick pairing. In this work, we study the classical dynamics of a parallel silver-mediated homobase double helix and compare it to the dynamics of the antiparallel double helix. Our classical simulations show that only the parallel double helix is highly stable through the 100 ns simulation time. A new type of H-bond previously proposed by our collaboration and recently observed in crystal-determined helices drives the physicochemical stabilization. Compared to the natural B-DNA form, the metal-mediated helix has a contracted axial base pair rise and smaller numbers of base pairs per turn. These results open the path for the inclusion of this robust metal-mediated building block into new nanoscale DNA assemblies. © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85032582170&doi=10.1021%2facsomega.7b01089&partnerID=40&md5=4fc49f30d5400640857d887ac8dc953fspa
dc.sourceScopusspa
dc.titleSilver-Mediated Double Helix: Structural Parameters for a Robust DNA Building Blockspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationChen, X., Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, Aalto, Finlandspa
dc.contributor.affiliationKarpenko, A., Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, Aalto, Finlandspa
dc.contributor.affiliationLopez-Acevedo, O., Department of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, Aalto, Finland, Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.identifier.doi10.1021/acsomega.7b01089
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractThe DNA double helix is a versatile building block used in DNA nanotechnology. To potentiate the discovery of new DNA nanoscale assemblies, recently, silver cations have been introduced to pair DNA strands by base-Ag+-base bonding rather than by Watson-Crick pairing. In this work, we study the classical dynamics of a parallel silver-mediated homobase double helix and compare it to the dynamics of the antiparallel double helix. Our classical simulations show that only the parallel double helix is highly stable through the 100 ns simulation time. A new type of H-bond previously proposed by our collaboration and recently observed in crystal-determined helices drives the physicochemical stabilization. Compared to the natural B-DNA form, the metal-mediated helix has a contracted axial base pair rise and smaller numbers of base pairs per turn. These results open the path for the inclusion of this robust metal-mediated building block into new nanoscale DNA assemblies. © 2017 American Chemical Society.eng
dc.creator.affiliationDepartment of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, Aalto, Finlandspa
dc.creator.affiliationFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombiaspa
dc.relation.ispartofesACS Omegaspa
dc.relation.ispartofesACS Omega Volume 2, Issue 10, 2017, Pages 7343-7348spa
dc.relation.referencesBath, J., & Turberfield, A. J. (2007). DNA nanomachines. Nature Nanotechnology, 2(5), 275-284. doi:10.1038/nnano.2007.104spa
dc.relation.referencesBayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. Journal of Physical Chemistry, 97(40), 10269-10280.spa
dc.relation.referencesBayly, C. I., Merz, K. M., Jr., Ferguson, D. M., Cornell, W. D., Fox, T., Caldwell, J. W., . . . Spellmeyer, D. C. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(19), 5179-5197. doi:10.1021/ja00124a002spa
dc.relation.referencesBerdakin, M., Taccone, M. I., Pino, G. A., & Sánchez, C. G. (2017). DNA-protected silver emitters: Charge dependent switching of fluorescence. Physical Chemistry Chemical Physics, 19(8), 5721-5726. doi:10.1039/c6cp08345espa
dc.relation.referencesCase, D. A., Cheatham III, T. E., Darden, T., Gohlke, H., Luo, R., Merz Jr., K. M., . . . Woods, R. J. (2005). The amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290spa
dc.relation.referencesChu, X., & Dalgarno, A. (2004). Linear response time-dependent density functional theory for van der waals coefficients. Journal of Chemical Physics, 121(9), 4083-4088. doi:10.1063/1.1779576spa
dc.relation.referencesClever, G. H., & Shionoya, M. (2010). Metal-base pairing in DNA. Coordination Chemistry Reviews, 254(19-20), 2391-2402. doi:10.1016/j.ccr.2010.04.014spa
dc.relation.referencesDouglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., & Shih, W. M. (2009). Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245), 414-418. doi:10.1038/nature08016spa
dc.relation.referencesDouglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih, W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 37(15), 5001-5006. doi:10.1093/nar/gkp436spa
dc.relation.referencesEnkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., . . . Jacobsen, K. W. (2010). Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. Journal of Physics Condensed Matter, 22(25) doi:10.1088/0953-8984/22/25/253202spa
dc.relation.referencesEspinosa Leal, L. A., Karpenko, A., Swasey, S., Gwinn, E. G., Rojas-Cervellera, V., Rovira, C., & Lopez-Acevedo, O. (2015). The role of hydrogen bonds in the stabilization of silver-mediated cytosine tetramers.Journal of Physical Chemistry Letters, 6(20), 4061-4066. doi:10.1021/acs.jpclett.5b01864spa
dc.relation.referencesFrisch, M. J. (2009). Gaussian 09.spa
dc.relation.referencesFunke, J. J., & Dietz, H. (2016). Placing molecules with bohr radius resolution using DNA origami. Nature Nanotechnology, 11(1), 47-52. doi:10.1038/nnano.2015.240spa
dc.relation.referencesGehring, K., Leroy, J. -., & Guéron, M. (1993). A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature, 363(6429), 561-565.spa
dc.relation.referencesGermann, M. W., Kalisch, B. W., & Van De Sande, J. H. (1988). Relative stability of parallel- and antiparallel-stranded duplex DNA. Biochemistry, 27(22), 8302-8306. doi:10.1021/bi00422a002spa
dc.relation.referencesHazel, P., Huppert, J., Balasubramanian, S., & Neidle, S. (2004). Loop-length-dependent folding of G-quadruplexes. Journal of the American Chemical Society, 126(50), 16405-16415. doi:10.1021/ja045154jspa
dc.relation.referencesHess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463spa
dc.relation.referencesHess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GRGMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301qspa
dc.relation.referencesHohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864-B871. doi:10.1103/PhysRev.136.B864spa
dc.relation.referencesJohannsen, S., Megger, N., Böhme, D., Sigel, R. K. O., & Müller, J. (2010). Solution structure of a DNA double helix with consecutive metal-mediated base pairs. Nature Chemistry, 2(3), 229-234. doi:10.1038/nchem.512spa
dc.relation.referencesKabsch, W., Sander, C., & Trifonov, E. N. (1982). The ten helical twist angles of B-DNA. Nucleic Acids Research, 10(3), 1097-1104. doi:10.1093/nar/10.3.1097spa
dc.relation.referencesKondo, J., Tada, Y., Dairaku, T., Hattori, Y., Saneyoshi, H., Ono, A., & Tanaka, Y. (2017). A metallo-DNA nanowire with uninterrupted one-dimensional silver array. Nature Chemistry, 9(10), 956-960. doi:10.1038/nchem.2808spa
dc.relation.referencesLavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917-5929. doi:10.1093/nar/gkp608spa
dc.relation.referencesLi, J., Correia, J. J., Wang, L., Trent, J. O., & Chaires, J. B. (2005). Not so crystal clear: The structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Research, 33(14), 4649-4659. doi:10.1093/nar/gki782spa
dc.relation.referencesLi, P., Song, L. F., & Merz, K. M. (2015). Systematic parameterization of monovalent ions employing the nonbonded model. Journal of Chemical Theory and Computation, 11(4), 1645-1657. doi:10.1021/ct500918tspa
dc.relation.referencesLu, X. -., & Olson, W. K. (2003). 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research, 31(17), 5108-5121. doi:10.1093/nar/gkg680spa
dc.relation.referencesLuzar, A., & Chandler, D. (1996). Hydrogen-bond kinetics in liquid water. Nature, 379(6560), 55-57.spa
dc.relation.referencesMandal, S., Hepp, A., & Müller, J. (2015). Unprecedented dinuclear silver(i)-mediated base pair involving the DNA lesion 1,N6-ethenoadenine. Dalton Transactions, 44(8), 3540-3543. doi:10.1039/c4dt02663bspa
dc.relation.referencesMegger, D. A., & Müller, J. (2010). Silver(I)-mediated cytosine self-pairing is preferred over hoogsteen-type base pairs with the artificial nucleobase 1,3-dideaza-6-nitropurine. Nucleosides, Nucleotides and Nucleic Acids, 29(1), 27-38. doi:10.1080/15257770903451579spa
dc.relation.referencesMergny, J. -., Lacroix, L., Hélène, C., Han, X., & Leroy, J. -. (1995). Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. Journal of the American Chemical Society, 117(35), 8887-8898. doi:10.1021/ja00140a001spa
dc.relation.referencesOno, A., Cao, S., Togashi, H., Tashiro, M., Fujimoto, T., MacHinami, T., . . . Tanaka, Y. (2008). Specific interactions between silver(i) ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications, (39), 4825-4827. doi:10.1039/b808686aspa
dc.relation.referencesPark, K. S., & Park, H. G. (2014). Technological applications arising from the interactions of DNA bases with metal ions. Current Opinion in Biotechnology, 28, 17-24. doi:10.1016/j.copbio.2013.10.013spa
dc.relation.referencesPérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham III, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers.Biophysical Journal, 92(11), 3817-3829. doi:10.1529/biophysj.106.097782spa
dc.relation.referencesPolonius, F. -., & Müller, J. (2007). An artificial base pair, mediated by hydrogen bonding and metal-ion binding. Angewandte Chemie - International Edition, 46(29), 5602-5604. doi:10.1002/anie.200700315spa
dc.relation.referencesRamazanov, R. R., Sych, T. S., Reveguk, Z. V., Maksimov, D. A., Vdovichev, A. A., & Kononov, A. I. (2016). Ag-DNA emitter: Metal nanorod or supramolecular complex? Journal of Physical Chemistry Letters, 7(18), 3560-3566. doi:10.1021/acs.jpclett.6b01672spa
dc.relation.referencesRangnekar, A., & Labean, T. H. (2014). Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Accounts of Chemical Research, 47(6), 1778-1788. doi:10.1021/ar500023bspa
dc.relation.referencesRippe, K., & Jovin, T. M. (1992). Parallel-stranded duplex DNA doi:10.1016/0076-6879(92)11013-9spa
dc.relation.referencesRothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082), 297-302. doi:10.1038/nature04586spa
dc.relation.referencesSa-Ardyen, P., Vologodskii, A. V., & Seeman, N. C. (2003). The flexibility of DNA double crossover molecules. Biophysical Journal, 84(6), 3829-3837. doi:10.1016/S0006-3495(03)75110-8spa
dc.relation.referencesScharf, P., & Müller, J. (2013). Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem, 78(1), 20-34. doi:10.1002/cplu.201200256spa
dc.relation.referencesSinha, I., Fonsecaguerra, C., & Müller, J. (2015). A highly stabilizing silver(I)-mediated base pair in parallel-stranded DNA. Angewandte Chemie - International Edition, 54(12), 3603-3606. doi:10.1002/anie.201411931spa
dc.relation.referencesSwasey, S. M., & Gwinn, E. G. (2016). Silver-mediated base pairings: Towards dynamic DNA nanostructures with enhanced chemical and thermal stability. New Journal of Physics, 18(4) doi:10.1088/1367-2630/18/4/045008spa
dc.relation.referencesSwasey, S. M., Leal, L. E., Lopez-Acevedo, O., Pavlovich, J., & Gwinn, E. G. (2015). Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing watson-crick constraints. Scientific Reports, 5doi:10.1038/srep10163spa
dc.relation.referencesTerrón, A., Moreno-Vachiano, B., Bauzá, A., García-Raso, A., Fiol, J. J., Barceló-Oliver, M., . . . Frontera, A. (2017). X-ray crystal structure of a metalled double-helix generated by infinite and consecutive C*-AgI-C* (C*:N1-hexylcytosine) base pairs through argentophilic and hydrogen bond interactions. Chemistry - A European Journal, 23(9), 2103-2108. doi:10.1002/chem.201604331spa
dc.relation.referencesTkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7) doi:10.1103/PhysRevLett.102.073005spa
dc.relation.referencesUssery, D. W. (2002). DNA structure: A-, B- and Z-DNA helix families. Encyclopedia of Life Sciences.spa
dc.relation.referencesWei, B., Ong, L. L., Chen, J., Jaffe, A. S., & Yin, P. (2014). Complex reconfiguration of DNA nanostructures. Angewandte Chemie - International Edition, 53(29), 7475-7479. doi:10.1002/anie.201402437spa
dc.relation.referencesYang, H., Metera, K. L., & Sleiman, H. F. (2010). DNA modified with metal complexes: Applications in the construction of higher order metal-DNA nanostructures. Coordination Chemistry Reviews, 254(19-20), 2403-2415. doi:10.1016/j.ccr.2010.02.026spa
dc.relation.referencesZhang, D. Y., & Winfree, E. (2009). Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society, 131(47), 17303-17314. doi:10.1021/ja906987sspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record