Mostrar el registro sencillo del ítem

dc.creatorDelley M.F.spa
dc.creatorLapadula G.spa
dc.creatorNúñez-Zarur F.spa
dc.creatorComas-Vives A.spa
dc.creatorKalendra V.spa
dc.creatorJeschke G.spa
dc.creatorBaabe D.spa
dc.creatorWalter M.D.spa
dc.creatorRossini A.J.spa
dc.creatorLesage A.spa
dc.creatorEmsley L.spa
dc.creatorMaury O.spa
dc.creatorCopéret C.spa
dc.date.accessioned2017-12-19T19:36:42Z
dc.date.available2017-12-19T19:36:42Z
dc.date.created2017
dc.identifier.issn27863
dc.identifier.urihttp://hdl.handle.net/11407/4261
dc.description.abstractGrafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties. © 2017 American Chemical Society.eng
dc.language.isoeng
dc.publisherAmerican Chemical Societyspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021997782&doi=10.1021%2fjacs.7b02179&partnerID=40&md5=87369cc3927c18a3b47e476d8ee2231bspa
dc.sourceScopusspa
dc.titleLocal Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopiesspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationDelley, M.F., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationLapadula, G., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationNúñez-Zarur, F., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Facultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N 30-65, Medellín, Colombiaspa
dc.contributor.affiliationComas-Vives, A., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationKalendra, V., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerland, Faculty of Physics, Vilnius University, Sauletekio 9, Vilnius, Lithuaniaspa
dc.contributor.affiliationJeschke, G., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.contributor.affiliationBaabe, D., Institut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, Germanyspa
dc.contributor.affiliationWalter, M.D., Institut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, Germanyspa
dc.contributor.affiliationRossini, A.J., Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerlandspa
dc.contributor.affiliationLesage, A., Centre de RMN À Tres Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), Villeurbanne, Francespa
dc.contributor.affiliationEmsley, L., Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerlandspa
dc.contributor.affiliationMaury, O., Laboratoire de Chimie de l'Ens Lyon, Université de Lyon (CNRS/ENS Lyon/UCB LyonUMR 5182), 46 alleé d'Italie, Lyon, Francespa
dc.contributor.affiliationCopéret, C., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.identifier.doi10.1021/jacs.7b02179
dc.subject.keywordAmideseng
dc.subject.keywordChromium compoundseng
dc.subject.keywordEthyleneeng
dc.subject.keywordLigandseng
dc.subject.keywordLuminescenceeng
dc.subject.keywordNitrogeneng
dc.subject.keywordNuclear magnetic resonance spectroscopyeng
dc.subject.keywordPolymerizationeng
dc.subject.keywordSilicaeng
dc.subject.keywordSpectroscopyeng
dc.subject.keywordStructural propertieseng
dc.subject.keywordSurface propertieseng
dc.subject.keywordYtterbiumeng
dc.subject.keywordAlkane dehydrogenationseng
dc.subject.keywordChemical and physical propertieseng
dc.subject.keywordDynamic nuclear polarizationeng
dc.subject.keywordLuminescence propertieseng
dc.subject.keywordLuminescence spectroscopyeng
dc.subject.keywordNon-radiative deactivationeng
dc.subject.keywordPhotophysical propertieseng
dc.subject.keywordSpectroscopic techniqueeng
dc.subject.keywordElectron spin resonance spectroscopyeng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractGrafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties. © 2017 American Chemical Society.eng
dc.creator.affiliationDepartment of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, Zürich, Switzerlandspa
dc.creator.affiliationFacultad de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 N 30-65, Medellín, Colombiaspa
dc.creator.affiliationFaculty of Physics, Vilnius University, Sauletekio 9, Vilnius, Lithuaniaspa
dc.creator.affiliationInstitut für Anorganische und Analytische Chemie, TU Braunschweig, Hagenring 30, Braunschweig, Germanyspa
dc.creator.affiliationInstitut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerlandspa
dc.creator.affiliationCentre de RMN À Tres Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), Villeurbanne, Francespa
dc.creator.affiliationLaboratoire de Chimie de l'Ens Lyon, Université de Lyon (CNRS/ENS Lyon/UCB LyonUMR 5182), 46 alleé d'Italie, Lyon, Francespa
dc.relation.ispartofesJournal of the American Chemical Societyspa
dc.relation.ispartofesJournal of the American Chemical Society Volume 139, Issue 26, 5 July 2017, Pages 8855-8867spa
dc.relation.referencesAllouche, F., Lapadula, G., Siddiqi, G., Lukens, W. W., Maury, O., Le Guennic, B., . . . Copéret, C. (2017). Magnetic memory from site isolated dy(III) on silica materials. ACS Central Science, 3(3), 244-249. doi:10.1021/acscentsci.7b00035spa
dc.relation.referencesAlyea, E. C., Bradley, D. C., Copperthwaite, R. G., & Sales, K. D. (1973). Three-co-ordinated transition-metal compounds. part II. electronic spectra and magnetism of tris(bistrimethylsilylamido)derivatives of scandium, titanium, vanadium, chromium, and iron. Journal of the Chemical Society, Dalton Transactions, (2), 185-191. doi:10.1039/DT9730000185spa
dc.relation.referencesAnwander, R. (2001). SOMC@PMS. surface organometallic chemistry at periodic mesoporous silica. Chemistry of Materials, 13(12), 4419-4438. doi:10.1021/cm0111534spa
dc.relation.referencesAnwander, R., Runte, O., Eppinger, J., Gerstberger, G., Herdtweck, E., & Spiegler, M. (1998). Synthesis and structural characterisation of rare-earth bis(dimethylsilyl)amides and their surface organometallic chemistry on mesoporous MCM-41. Journal of the Chemical Society - Dalton Transactions, (5), 847-858.spa
dc.relation.referencesAsefa, T., Kruk, M., Coombs, N., Grondey, H., MacLachlan, M. J., Jaroniec, M., & Ozin, G. A. (2003). Novel route to periodic mesoporous aminosilicas, PMAs: Ammonolysis of periodic mesoporous organosilicas.Journal of the American Chemical Society, 125(38), 11662-11673. doi:10.1021/ja036080zspa
dc.relation.referencesBarrera, J. A., & Wilcox, D. E. (1992). EPR study of the toluene solution properties of the chromium(III)-alkyl complexes [CpCrMeCl]2, [Cp*CrRCl]2 (R = me, et, CH2SiMe3), and [Cp*CrMeBr]2: Dimer-monomer equilibria in solution. Inorganic Chemistry, 31(10), 1745-1752.spa
dc.relation.referencesBecerra, L. R., Gerfen, G. J., Bellew, B. F., Bryant, J. A., Hall, D. A., Inati, S. J., . . . Griffin, R. G. (1995). A spectrometer for dynamic nuclear polarization and electron paramagnetic resonance at high frequencies. Journal of Magnetic Resonance, Series A, 117(1), 28-40. doi:10.1006/jmra.1995.9975spa
dc.relation.referencesBecerra, L. R., Gerfen, G. J., Temkin, R. J., Singel, D. J., & Griffin, R. G. (1993). Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Physical Review Letters, 71(21), 3561-3564. doi:10.1103/PhysRevLett.71.3561spa
dc.relation.referencesBerry, A. J., & O'Neill, H. S. C. (2004). A XANES determination of the oxidation state of chromium in silicate glasses. American Mineralogist, 89(5-6), 790-798.spa
dc.relation.referencesBinnemans, K. (2015). Interpretation of europium (III) spectra. Coordination Chemistry Reviews, 295, 1-45. doi:10.1016/j.ccr.2015.02.015spa
dc.relation.referencesBinnemans, K., Van Herck, K., & Görller-Walrand, C. (1997). Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. Chemical Physics Letters, 266(3-4), 297-302.spa
dc.relation.referencesBradley, D. C., Copperthwaite, R. G., Cotton, S. A., Sales, K. D., & Gibson, J. F. (1973). Three-co-ordinated transition-metal compounds. part III. electron spin resonance studies on tris(bistrimethylsilylamido)derivatives of titanium, chromium, and iron. Journal of the Chemical Society, Dalton Transactions, (2), 191-194. doi:10.1039/DT9730000191spa
dc.relation.referencesBuijink, J. K. F., Van Vlaanderen, J. J. M., Crocker, M., & Niele, F. G. M. (2004). Propylene epoxidation over titanium-on-silica catalyst - the heart of the SMPO process. Catalysis Today, 93-95, 199-204. doi:10.1016/j.cattod.2004.06.041spa
dc.relation.referencesBünzli, J. -. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110(5), 2729-2755. doi:10.1021/cr900362espa
dc.relation.referencesBünzli, J. C. G., Chauvin, A. -., Kim, H. K., Deiters, E., & Eliseeva, S. V. (2010). Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: Role of the radiative lifetime. Coordination Chemistry Reviews, 254(21-22), 2623-2633. doi:10.1016/j.ccr.2010.04.002spa
dc.relation.referencesBürger, H., & Wannagat, U. (1964). Silylamido-verbindungen von chrom, mangan, nickel und kupfer - beiträge zur chemie der silicium-stickstoff-verbindungen, 43. mitt. Monatshefte Für Chemie, 95(4-5), 1099-1102. doi:10.1007/BF00904702spa
dc.relation.referencesCarver, T. R., & Slichter, C. P. (1953). Polarization of nuclear spins in metals [15]. Physical Review, 92(1), 212-213. doi:10.1103/PhysRev.92.212.2spa
dc.relation.referencesChen, R. (2003). Apparent stretched-exponential luminescence decay in crystalline solids. Journal of Luminescence, 102-103(SPEC), 510-518. doi:10.1016/S0022-2313(02)00601-4spa
dc.relation.referencesCherian, M., Rao, M. S., Hirt, A. M., Wachs, I. E., & Deo, G. (2002). Oxidative dehydrogenation of propane over supported chromia catalysts: Influence of oxide supports and chromia loading. Journal of Catalysis, 211(2), 482-495. doi:10.1006/jcat.2002.3759spa
dc.relation.referencesColes, M. P., Lugmair, C. G., Terry, K. W., & Tilley, T. D. (2000). Titania-silica materials from the molecular precursor ti[OSi(O(t)bu)3]4: Selective epoxidation catalysts. Chemistry of Materials, 12(1), 122-131. doi:10.1021/cm990444yspa
dc.relation.referencesComas-Vives, A. (2016). Amorphous SiO2 surface models: Energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Physical Chemistry Chemical Physics, 18(10), 7475-7482. doi:10.1039/c6cp00602gspa
dc.relation.referencesConley, M. P., Delley, M. F., Núnez-Zarur, F., Comas-Vives, A., & Copéret, C. (2015). Heterolytic activation of C-H bonds on CrIII-O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane. Inorganic Chemistry, 54(11), 5065-5078. doi:10.1021/ic502696nspa
dc.relation.referencesConley, M. P., Delley, M. F., Siddiqi, G., Lapadula, G., Norsic, S., Monteil, V., . . . Copéret, C. (2014). Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C=H bond activation. Angewandte Chemie - International Edition, 53(7), 1872-1876. doi:10.1002/anie.201308983spa
dc.relation.referencesCopéret, C. (2010). C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces. Chemical Reviews, 110(2), 656-680. doi:10.1021/cr900122pspa
dc.relation.referencesCopéret, C., Comas-Vives, A., Conley, M. P., Estes, D. P., Fedorov, A., Mougel, V., . . . Zhizhko, P. A. (2016). Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: Strategies, methods, structures, and activities. Chemical Reviews, 116(2), 323-421. doi:10.1021/acs.chemrev.5b00373spa
dc.relation.referencesDelley, M. F. (2015). A molecular approach to well-defined metal sites supported on oxides with oxidation state and nuclearity control. Chimia, 69(4), 168-171. doi:10.2533/chimia.2015.168spa
dc.relation.referencesDelley, M. F., Núñez-Zarur, F., Conley, M. P., Comas-Vives, A., Siddiqi, G., Norsic, S., . . . Copéret, C. (2014). Proton transfers are key elementary steps in ethylene polymerization on isolated chromium(III) silicates. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11624-11629. doi:10.1073/pnas.1405314111spa
dc.relation.referencesDelley, M. F., Silaghi, M. -., Nuñez-Zarur, F., Kovtunov, K. V., Salnikov, O. G., Estes, D. P., . . . Coperet, C. (2017). X-H bond activation on cr(III),O sites (X = R, H): Key steps in dehydrogenation and hydrogenation processes. Organometallics, 36(1), 234-244. doi:10.1021/acs.organomet.6b00744spa
dc.relation.referencesDombrowski, J. P., Johnson, G. R., Bell, A. T., & Tilley, T. D. (2016). Ga[OSi(OtBu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry. Dalton Transactions, 45(27), 11025-11034. doi:10.1039/c6dt01676fspa
dc.relation.referencesEstes, D. P., Siddiqi, G., Allouche, F., Kovtunov, K. V., Safonova, O. V., Trigub, A. L., . . . Copéret, C. (2016). C-H activation on co,O sites: Isolated surface sites versus molecular analogs. Journal of the American Chemical Society, 138(45), 14987-14997. doi:10.1021/jacs.6b08705spa
dc.relation.referencesFloryan, L., Borosy, A. P., Núñez-Zarur, F., Comas-Vives, A., & Copéret, C. (2017). Strain effect and dual initiation pathway in CrIII/SiO2polymerization catalysts from amorphous periodic models. Journal of Catalysis, 346, 50-56. doi:10.1016/j.jcat.2016.11.037spa
dc.relation.referencesFujdala, K. L., Brutchey, R. L., & Tilley, T. D. (2005). Tailored oxide materials via thermolytic molecular precursor (TMP) methods. Top.Organomet.Chem., 16, 69-115.spa
dc.relation.referencesFujdala, K. L., & Tilley, T. D. (2003). Design and synthesis of heterogeneous catalysts: The thermolytic molecular precursor approach. Journal of Catalysis, 216(1-2), 265-275. doi:10.1016/S0021-9517(02)00106-9spa
dc.relation.referencesFujdala, K. L., & Tilley, T. D. (2002). New vanadium tris(tert-butoxy)siloxy complexes and their thermolytic conversions to vanadia-silica materials. Chemistry of Materials, 14(3), 1376-1384. doi:10.1021/cm011524gspa
dc.relation.referencesFujdala, K. L., & Tilley, T. D. (2003). Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane. Journal of Catalysis, 218(1), 123-134. doi:10.1016/S0021-9517(03)00141-6spa
dc.relation.referencesFujdala, K. L., & Tilley, T. D. (2001). Thermolytic transformation of tris(alkoxy)siloxychromium(IV) single-source molecular precursors to catalytic chromia-silica materials. Chemistry of Materials, 13(5), 1817-1827. doi:10.1021/cm010027xspa
dc.relation.referencesGajan, D., Schwarzwälder, M., Conley, M. P., Grüning, W. R., Rossini, A. J., Zagdoun, A., . . . Copéret, C. (2013). Solid-phase polarization matrixes for dynamic nuclear polarization from homogeneously distributed radicals in mesostructured hybrid silica materials. Journal of the American Chemical Society, 135(41), 15459-15466. doi:10.1021/ja405822hspa
dc.relation.referencesGauvin, R. M., Delevoye, L., Hassan, R. A., Keldenich, J., & Mortreux, A. (2007). Well-defined silica-supported rare-earth silylamides. Inorganic Chemistry, 46(4), 1062-1070. doi:10.1021/ic0610334spa
dc.relation.referencesGauvin, R. M., & Mortreux, A. (2005). Silica-supported lanthanide silylamides for methyl methacrylate polymerisation: Controlled grafting induces controlled reactivity. Chemical Communications, (9), 1146-1148. doi:10.1039/b416533kspa
dc.relation.referencesGetsoian, A., Das, U., Camacho-Bunquin, J., Zhang, G., Gallagher, J. R., Hu, B., . . . Hock, A. S. (2016). Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in ga K-edge XANES. Catalysis Science and Technology, 6(16), 6339-6353. doi:10.1039/c6cy00698aspa
dc.relation.referencesGroppo, E., Lamberti, C., Bordiga, S., Spoto, G., & Zecchina, A. (2005). The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: A frontier for the characterization methods. Chemical Reviews, 105(1), 115-183. doi:10.1021/cr040083sspa
dc.relation.referencesGuzman, J., & Gates, B. C. (2003). Supported molecular catalysts: Metal complexes and clusters on oxides and zeolites. Journal of the Chemical Society.Dalton Transactions, (17), 3303-3318.spa
dc.relation.referencesHall, D. A., Maus, D. C., Gerfen, G. J., Inati, S. J., Becerra, L. R., Dahlquist, F. W., & Griffin, R. G. (1997). Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science, 276(5314), 930-932. doi:10.1126/science.276.5314.930spa
dc.relation.referencesHocking, R. K., & Solomon, E. I. (2012). Ligand field and molecular orbital theories of transition metal X-ray absorption edge transitions doi:10.1007/430_2011_60spa
dc.relation.referencesHu, B., Bean Getsoian, A., Schweitzer, N. M., Das, U., Kim, H., Niklas, J., . . . Hock, A. S. (2015). Selective propane dehydrogenation with single-site CoII on SiO2 by a non-redox mechanism. Journal of Catalysis, 322, 24-37. doi:10.1016/j.jcat.2014.10.018spa
dc.relation.referencesHu, B., Schweitzer, N. M., Zhang, G., Kraft, S. J., Childers, D. J., Lanci, M. P., . . . Hock, A. S. (2015). Isolated FeII on silica as a selective propane dehydrogenation catalyst. ACS Catalysis, 5(6), 3494-3503. doi:10.1021/acscatal.5b00248spa
dc.relation.referencesKobayashi, T., Perras, F. A., Slowing, I. I., Sadow, A. D., & Pruski, M. (2015). Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. ACS Catalysis, 5(12), 7055-7062. doi:10.1021/acscatal.5b02039spa
dc.relation.referencesKöhn, R. D., Kociok-Köhn, G., & Haufe, M. (1996). High yield synthesis of [cr{N(SiMe3)2}] and accurate structure determination by cocrystallization with mez6Si2. Chemische Berichte, 129(1), 25-27.spa
dc.relation.referencesKuska, H. A., & Rogers, M. T. (1965). Single-crystal ESR spectra and covalent bonding in [cr(CN) 5NO]3- ion. The Journal of Chemical Physics, 42(9), 3034-3039.spa
dc.relation.referencesLapadula, G., Bourdolle, A., Allouche, F., Conley, M. P., Del Rosal, I., Maron, L., . . . Andersen, R. A. (2014). Near-IR two photon microscopy imaging of silica nanoparticles functionalized with isolated sensitized yb(III) centers. Chemistry of Materials, 26(2), 1062-1073. doi:10.1021/cm404140qspa
dc.relation.referencesLapadula, G., Conley, M. P., Copéret, C., & Andersen, R. A. (2015). Synthesis and characterization of rare earth siloxide complexes, M[OSi(OtBu)3]3(L)x where L is HOSi(OtBu)3 and x = 0 or 1.Organometallics, 34(11), 2271-2277. doi:10.1021/om501047gspa
dc.relation.referencesLapadula, G., Trummer, D., Conley, M. P., Steinmann, M., Ran, Y. -., Brasselet, S., . . . Copéret, C. (2015). One-photon near-infrared sensitization of well-defined yb(III) surface complexes for NIR-to-NIR single nanoparticle imaging. Chemistry of Materials, 27(6), 2033-2039. doi:10.1021/acs.chemmater.5b00306spa
dc.relation.referencesLe Roux, E., & Anwander, R. (2009). Surface organolanthanide and -actinide chemistry. Modern surface organometallic chemistry (pp. 455-512) doi:10.1002/9783527627097.ch12spa
dc.relation.referencesLelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Miéville, P., . . . Emsley, L. (2011). Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. Journal of the American Chemical Society, 133(7), 2104-2107. doi:10.1021/ja110791dspa
dc.relation.referencesLesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Miéville, P., . . . Emsley, L. (2010). Surface enhanced NMR spectroscopy by dynamic nuclear polarization. Journal of the American Chemical Society, 132(44), 15459-15461. doi:10.1021/ja104771zspa
dc.relation.referencesLiang, Y., & Anwander, R. (2013). Nanostructured catalysts via metal amide-promoted smart grafting. Dalton Transactions, 42(35), 12521-12545. doi:10.1039/c3dt51346gspa
dc.relation.referencesLwin, S., & Wachs, I. E. (2014). Olefin metathesis by supported metal oxide catalysts. ACS Catalysis, 4(8), 2505-2520. doi:10.1021/cs500528hspa
dc.relation.referencesMaly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K. -., Joo, C. -., Mak-Jurkauskas, M. L., . . . Griffin, R. G. (2008). Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics, 128(5) doi:10.1063/1.2833582spa
dc.relation.referencesMétivier, R., Leray, I., Lefèvre, J. -., Roy-Auberger, M., Zanier-Szydlowski, N., & Valeur, B. (2003). Characterization of alumina surfaces by fluorescence spectroscopy. part 2. photophysics of a bound pyrene derivative as a probe of the spatial distribution of reactive hydroxyl groups. Physical Chemistry Chemical Physics, 5(4), 758-766. doi:10.1039/b209735dspa
dc.relation.referencesMonoi, T., Ikeda, H., Ohira, H., & Sasaki, Y. (2002). Ethylene polymerization with silica-supported cr[N(SiMe3)2]3/alumoxane catalyst. Polymer Journal, 34(6), 461-465. doi:10.1295/polymj.34.461spa
dc.relation.referencesMougel, V., Chan, K. -., Siddiqi, G., Kawakita, K., Nagae, H., Tsurugi, H., . . . Copéret, C. (2016). Low temperature activation of supported metathesis catalysts by organosilicon reducing agents. ACS Central Science, 2(8), 569-576. doi:10.1021/acscentsci.6b00176spa
dc.relation.referencesNi, Q. Z., Daviso, E., Can, T. V., Markhasin, E., Jawla, S. K., Swager, T. M., . . . Griffin, R. G. (2013). High frequency dynamic nuclear polarization. Accounts of Chemical Research, 46(9), 1933-1941. doi:10.1021/ar300348nspa
dc.relation.referencesOverhauser, A. W. (1953). Polarization of nuclei in metals. Physical Review, 92(2), 411-415. doi:10.1103/PhysRev.92.411spa
dc.relation.referencesPantelouris, A., Modrow, H., Pantelouris, M., Hormes, J., & Reinen, D. (2004). The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chemical Physics, 300(1-3), 13-22. doi:10.1016/j.chemphys.2003.12.017spa
dc.relation.referencesPedersen, E., & Kallesoe, S. (1975). Electron spin resonance spectra of tetragonal chromium (III) complexes. II. frozen-solution and powder spectra of [cr(NH3)5X]n+. A correlation with zero-field splittings and g factors obtained from complete d3-configuration calculations. Inorganic Chemistry, 14(1), 85-88. doi:10.1021/ic50143a018spa
dc.relation.referencesPelletier, J. D. A., & Basset, J. -. (2016). Catalysis by design: Well-defined single-site heterogeneous catalysts. Accounts of Chemical Research, 49(4), 664-677. doi:10.1021/acs.accounts.5b00518spa
dc.relation.referencesRendón, N., Bourdolle, A., Baldeck, P. L., Le Bozec, H., Andraud, C., Brasselet, S., . . . Maury, O. (2011). Bright luminescent silica nanoparticles for two-photon microscopy imaging via controlled formation of 4,4′-diethylaminostyryl-2,2′-bipyridine zn(II) surface complexes. Chemistry of Materials, 23(13), 3228-3236. doi:10.1021/cm2010852spa
dc.relation.referencesRossini, A. J., Zagdoun, A., Lelli, M., Lesage, A., Copéret, C., & Emsley, L. (2013). Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 46(9), 1942-1951. doi:10.1021/ar300322xspa
dc.relation.referencesRulkens, R., Male, J. L., Terry, K. W., Olthof, B., Khodakov, A., Bell, A. T., . . . Don Tilley, T. (1999). Vanadyl tert-butoxy orthosilicate, OV[OSi(OtBu)3]3: A model for isolated vanadyl sites on silica and a precursor to vanadia-silica xerogels a. Chemistry of Materials, 11(10), 2966-2973.spa
dc.relation.referencesRulkens, R., & Tilley, T. D. (1998). A molecular precursor route to active and selective vanadia-silica- zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane [10]. Journal of the American Chemical Society, 120(38), 9959-9960. doi:10.1021/ja981798dspa
dc.relation.referencesSattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436spa
dc.relation.referencesSearles, K., Siddiqi, G., Safonova, O. V., & Copéret, C. (2017). Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts. Chemical Science, 8(4), 2661-2666. doi:10.1039/c6sc05178bspa
dc.relation.referencesSolomon, E. I., & Bell, C. B. (2010). Inorganic and bioinorganic spectroscopy. Physical inorganic chemistry: Principles, methods, and models (pp. 1-37) doi:10.1002/9780470602539.ch1spa
dc.relation.referencesSolomon, E. I., Hedman, B., Hodgson, K. O., Dey, A., & Szilagyi, R. K. (2005). Ligand K-edge X-ray absorption spectroscopy: Covalency of ligand-metal bonds. Coordination Chemistry Reviews, 249(1-2), 97-129. doi:10.1016/j.ccr.2004.03.020spa
dc.relation.referencesTada, M., & Iwasawa, Y. (2007). Advanced design of catalytically active reaction space at surfaces for selective catalysis. Coordination Chemistry Reviews, 251(21-24), 2702-2716. doi:10.1016/j.ccr.2007.06.008spa
dc.relation.referencesTerry, K. W., Lugmair, C. G., & Tilley, T. D. (1997). Tris(tert-butoxy)siloxy complexes as single-source precursors to homogeneous zirconia- and hafnia-silica materials. an alternative to the sol-gel method.Journal of the American Chemical Society, 119(41), 9745-9756. doi:10.1021/ja971405vspa
dc.relation.referencesThomas, J. M., Raja, R., & Lewis, D. W. (2005). Single-site heterogeneous catalysts. Angewandte Chemie - International Edition, 44(40), 6456-6482. doi:10.1002/anie.200462473spa
dc.relation.referencesWeckhuysen, B. M., Schoonheydt, R. A., Mabbs, F. E., & Collison, D. (1996). Electron paramagnetic resonance of heterogeneous chromium catalysts. Journal of the Chemical Society - Faraday Transactions, 92(13), 2431-2436.spa
dc.relation.referencesWeckhuysen, B. M., Wachs, I. E., & Schoonheydt, R. A. (1996). Surface chemistry and spectroscopy of chromium in inorganic oxides. Chemical Reviews, 96(8), 3327-3349.spa
dc.relation.referencesWegener, S. L., Marks, T. J., & Stair, P. C. (2012). Design strategies for the molecular level synthesis of supported catalysts. Accounts of Chemical Research, 45(2), 206-214. doi:10.1021/ar2001342spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem