Mostrar el registro sencillo del ítem

dc.creatorQuintero J.H.spa
dc.creatorOspina R.spa
dc.creatorMello A.spa
dc.creatorEscobar D.spa
dc.creatorRestrepo-Parra E.spa
dc.date.accessioned2017-12-19T19:36:43Z
dc.date.available2017-12-19T19:36:43Z
dc.date.created2017
dc.identifier.issn1422421
dc.identifier.urihttp://hdl.handle.net/11407/4266
dc.description.abstractIn this work, the production of RuN thin films using the reactive direct current magnetron sputtering technique is presented. Samples were grown with varying Ar/N2 ratio with values of 60/40, 80/20, 85/15, 90/10, 95/5, and 100/0. X-ray photoelectron spectroscopy was employed to determine the presence of RuN before and after a sputtering etching process. According to the high-resolution of N1s spectra, 3 peaks were identified at 397.4±0.3 eV, 398.3±0.3 eV, and 398.8±0.3 eV binding energies, corresponding to hybridizations of nitrogen with transition metals, oxynitrides, and oxycarbides. X-ray diffraction analyses were performed, showing the coexistence of the RuN face-centered cubic and Ru hexagonal compact packed phases. After the etching process, the samples grown at nitrogen flow rates greater than 15% continued to show the RuN face-centered cubic phase. Atomic force microscope analyses showed that as the nitrogen concentration increased, the grain size and roughness also tended to increase. © 2017 John Wiley & Sons, Ltd.eng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85025101401&doi=10.1002%2fsia.6256&partnerID=40&md5=bf6d196bba6162152aa4ecd7bdb91e43spa
dc.sourceScopusspa
dc.titleInfluence of nitrogen partial pressure on the microstructure and morphological properties of sputtered RuN coatingsspa
dc.typeArticle in Presseng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationQuintero, J.H., Materiales Nanoestructurados y Biomodelación Universidad de Medellín Medellín Colombiaspa
dc.contributor.affiliationOspina, R., Centro Brasilero de Pesquisas Fisica-CBPF Rio de Janeiro Brazil, Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombia, Escuela de Física, Centro de Materiales y Nanociencia Universidad Industrial de Santander Bucaramanga Colombiaspa
dc.contributor.affiliationMello, A., Centro Brasilero de Pesquisas Fisica-CBPF Rio de Janeiro Brazilspa
dc.contributor.affiliationEscobar, D., Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombiaspa
dc.contributor.affiliationRestrepo-Parra, E., Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombiaspa
dc.identifier.doi10.1002/sia.6256
dc.subject.keywordAFMeng
dc.subject.keywordNitrogen concentrationeng
dc.subject.keywordRu-Neng
dc.subject.keywordXPSeng
dc.subject.keywordXRDeng
dc.subject.keywordAtomic force microscopyeng
dc.subject.keywordBinding energyeng
dc.subject.keywordEtchingeng
dc.subject.keywordMagnetronseng
dc.subject.keywordX ray diffractioneng
dc.subject.keywordX ray diffraction analysiseng
dc.subject.keywordX ray photoelectron spectroscopyeng
dc.subject.keywordDirect current magnetron sputteringeng
dc.subject.keywordEtching processeng
dc.subject.keywordFace centered cubic phaseeng
dc.subject.keywordFace-centered cubiceng
dc.subject.keywordMorphological propertieseng
dc.subject.keywordNitrogen concentrationseng
dc.subject.keywordNitrogen flow rateseng
dc.subject.keywordNitrogen partial pressureseng
dc.subject.keywordNitrogeneng
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.abstractIn this work, the production of RuN thin films using the reactive direct current magnetron sputtering technique is presented. Samples were grown with varying Ar/N2 ratio with values of 60/40, 80/20, 85/15, 90/10, 95/5, and 100/0. X-ray photoelectron spectroscopy was employed to determine the presence of RuN before and after a sputtering etching process. According to the high-resolution of N1s spectra, 3 peaks were identified at 397.4±0.3 eV, 398.3±0.3 eV, and 398.8±0.3 eV binding energies, corresponding to hybridizations of nitrogen with transition metals, oxynitrides, and oxycarbides. X-ray diffraction analyses were performed, showing the coexistence of the RuN face-centered cubic and Ru hexagonal compact packed phases. After the etching process, the samples grown at nitrogen flow rates greater than 15% continued to show the RuN face-centered cubic phase. Atomic force microscope analyses showed that as the nitrogen concentration increased, the grain size and roughness also tended to increase. © 2017 John Wiley & Sons, Ltd.eng
dc.creator.affiliationMateriales Nanoestructurados y Biomodelación Universidad de Medellín Medellín Colombiaspa
dc.creator.affiliationCentro Brasilero de Pesquisas Fisica-CBPF Rio de Janeiro Brazilspa
dc.creator.affiliationLaboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombiaspa
dc.creator.affiliationEscuela de Física, Centro de Materiales y Nanociencia Universidad Industrial de Santander Bucaramanga Colombiaspa
dc.relation.ispartofesSurface and Interface Analysisspa
dc.relation.ispartofesSurface and Interface Analysis Volume 49, Issue 10, October 2017, Pages 978-984spa
dc.relation.referencesBannikov, V. V., Shein, I. R., Medvedeva, N. I., & Ivanovskii, A. L. (2009). The influence of nitrogen vacancies on the magnetic and electronic properties of ruthenium mononitride: First-principles study.Journal of Magnetism and Magnetic Materials, 321(21), 3624-3629. doi:10.1016/j.jmmm.2009.07.008spa
dc.relation.referencesBarote, M. A., Kamble, S. S., Yadav, A. A., Suryavanshi, R. V., Deshmukh, L. P., & Masumdar, E. U. (2012). Thickness dependence of cd 0.825Pb 0.175S thin film properties. Materials Letters, 78, 113-115. doi:10.1016/j.matlet.2012.03.018spa
dc.relation.referencesBertóti, I. (2002). Characterization of nitride coatings by XPS. Surface and Coatings Technology, 151-152, 194-203. doi:10.1016/S0257-8972(01)01619-Xspa
dc.relation.referencesBouhtiyya, S., Lucio Porto, R., Laïk, B., Boulet, P., Capon, F., Pereira-Ramos, J. P., . . . Pierson, J. F. (2013). Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scripta Materialia, 68(9), 659-662. doi:10.1016/j.scriptamat.2013.01.030spa
dc.relation.referencesBruinsma, R., & Zangwill, A. (1985). Theory of the hcp-fcc transition in metals. Physical Review Letters, 55(2), 214-217. doi:10.1103/PhysRevLett.55.214spa
dc.relation.referencesCattaruzza, E., Battaglin, G., Cristofori, D., Finotto, T., Riello, P., & Glisenti, A. (2015). On the synthesis and thermal stability of RuN, an uncommon nitride. Surface and Coatings Technology, 295, 93-98. doi:10.1016/j.surfcoat.2015.10.019spa
dc.relation.referencesCattaruzza, E., Battaglin, G., Riello, P., Cristofori, D., & Tamisari, M. (2014). On the synthesis of a compound with positive enthalpy of formation: Zinc-blende-like RuN thin films obtained by rf-magnetron sputtering. Applied Surface Science, 320, 863-870. doi:10.1016/j.apsusc.2014.09.158spa
dc.relation.referencesChoi, S., Kang, J., Park, J., & Kang, Y. -. (2014). Tin nitride thin films fabricated by reactive radio frequency magnetron sputtering at various nitrogen gas ratios. Thin Solid Films, 571(P1), 84-89. doi:10.1016/j.tsf.2014.10.035spa
dc.relation.referencesColmenares, F., & Meléndez, S. (2003). Theoretical study of the ru + N2 molecular interaction. Chemical Physics Letters, 380(3-4), 292-297. doi:10.1016/j.cplett.2003.08.117spa
dc.relation.referencesCrowhurst, J. C., Goncharov, A. F., Sadigh, B., Evans, C. L., Morrall, P. G., Ferreira, J. L., & Nelson, A. J. (2006). Synthesis and characterization of the nitrides of platinum and iridium. Science, 311(5765), 1275-1278. doi:10.1126/science.1121813spa
dc.relation.referencesDevia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944spa
dc.relation.referencesDoniach, S., & Sunjic, M. (1970). Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. Journal of Physics C: Solid State Physics, 3(2), 285-291. doi:10.1088/0022-3719/3/2/010spa
dc.relation.referencesEvans, J. F., & Kuwana, T. (1979). Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasmas. Analytical Chemistry, 51(3), 358-365. doi:10.1021/ac50039a010spa
dc.relation.referencesFang, F., Zhang, Y., Wu, X., Shao, Q., & Xie, Z. (2015). Electrical and optical properties of nitrogen doped SnO2 thin films deposited on flexible substrates by magnetron sputtering. Materials Research Bulletin, 68, 240-244. doi:10.1016/j.materresbull.2015.03.072spa
dc.relation.referencesGregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. -., & Hemley, R. J. (2004). Synthesis and characterization of a binary noble metal nitride. Nature Materials, 3(5), 294-297. doi:10.1038/nmat1115spa
dc.relation.referencesHashim, S. B., Mahzan, N. H., Herman, S. H., & Rusop, M. (2012). Room-temperature deposition of silicon thin films by RF magnetron sputtering doi:10.4028/www.scientific.net/AMR.576.543spa
dc.relation.referencesHuang, C., Ye, X., Chen, C., Lin, S., & Xie, D. (2013). A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheet. Computational and Theoretical Chemistry, 1011, 5-10. doi:10.1016/j.comptc.2013.02.004spa
dc.relation.referencesJones, C., & Sammann, E. (1990). The effect of low power plasmas on carbon fibre surfaces. Carbon, 28(4), 509-514. doi:10.1016/0008-6223(90)90046-2spa
dc.relation.referencesKolkman, H. J. (1995). Effect of TiN/Ti gas turbine compressor coatings on the fatigue strength of Ti6Al4V base metal. Surface and Coatings Technology, 72(1-2), 30-36. doi:10.1016/0257-8972(94)02336-0spa
dc.relation.referencesLaïk, B., Bourg, S., Pereira-Ramos, J. -., Bruyère, S., & Pierson, J. -. (2015). Electrochemical reaction of lithium with ruthenium nitride thin films prepared by pulsed-DC magnetron sputtering. Electrochimica Acta, 164, 12-20. doi:10.1016/j.electacta.2015.02.171spa
dc.relation.referencesLiao, Y. H., & Chou, J. C. (2009). Fabrication and characterization of a ruthenium nitride membrane for electrochemical pH sensors. Sensors, 9(4), 2478-2490.spa
dc.relation.referencesMoreno-Armenta, M. G., Diaz, J., Martinez-Ruiz, A., & Soto, G. (2007). Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation. Journal of Physics and Chemistry of Solids, 68(10), 1989-1994. doi:10.1016/j.jpcs.2007.06.002spa
dc.relation.referencesNalla, R. K., Boyce, B. L., Campbell, J. P., Peters, J. O., & Ritchie, R. O. (2002). Influence of microstructure on high-cycle fatigue of ti-6Al-4V: Bimodal vs. lamellar structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 33(3), 899-918.spa
dc.relation.referencesPanich, N., Wangyao, P., Hannongbua, S., Sricharoenchai, P., & Sun, Y. (2007). Effect of argon-nitrogen mixing gas during magnetron sputtering on titanium interlayer deposition with TiB2 coatings on high speed steel. Reviews on Advanced Materials Science, 16(1-2), 80-87.spa
dc.relation.referencesPark, K. S., Park, Y. J., Kim, M. K., Son, J. T., Kim, H. G., & Kim, S. J. (2001). Characteristics of tin nitride thin-film negative electrode for thin-film microbattery. Journal of Power Sources, 103(1), 67-71. doi:10.1016/S0378-7753(01)00829-1spa
dc.relation.referencesQuintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766spa
dc.relation.referencesQuintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002spa
dc.relation.referencesQuintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081spa
dc.relation.referencesQuintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Electrical properties of AuN thin films. Paper presented at the Physica Scripta T, T131 doi:10.1088/0031-8949/2008/T131/014013spa
dc.relation.referencesRam, R. S., & Bernath, P. F. (2002). Fourier transform emission spectroscopy of the F2Σ+-X2Σ+ system of RuN. Journal of Molecular Spectroscopy, 213(2), 170-178. doi:10.1006/jmsp.2002.8565spa
dc.relation.referencesSoto, G., De La Cruz, W., & Farías, M. H. (2004). XPS, AES, and EELS characterization of nitrogen-containing thin films. Journal of Electron Spectroscopy and Related Pheomena, 135(1), 27-39. doi:10.1016/j.elspec.2003.12.004spa
dc.relation.referencesSteimle, T. C., & Virgo, W. (2003). The permanent electric dipole moments and magnetic hyperfine interactions of ruthenium mononitride, RuN. Journal of Chemical Physics, 119(24), 12965-12972. doi:10.1063/1.1626536spa
dc.relation.referencesWu, C. -., Lee, W. -., Chang, S. -., Cheng, Y. -., & Wang, Y. -. (2011). Effect of annealing on the microstructure and electrical property of RuN thin films. Journal of the Electrochemical Society, 158(3), H338-H342. doi:10.1149/1.3537825spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem