dc.creator | Osorio J.D. | spa |
dc.creator | Rivera-Alvarez A. | spa |
dc.creator | Girurugwiro P. | spa |
dc.creator | Yang S. | spa |
dc.creator | Hovsapian R. | spa |
dc.creator | Ordonez J.C. | spa |
dc.date.accessioned | 2017-12-19T19:36:49Z | |
dc.date.available | 2017-12-19T19:36:49Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 0038092X | |
dc.identifier.uri | http://hdl.handle.net/11407/4338 | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015655728&doi=10.1016%2fj.solener.2017.03.011&partnerID=40&md5=512f5a4ef64dcd364863fcd7278378df | spa |
dc.source | Scopus | spa |
dc.title | Integration of transparent insulation materials into solar collector devices | spa |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Osorio, J.D., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, Colombia | spa |
dc.contributor.affiliation | Rivera-Alvarez, A., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Ingeniería Térmica Ltda, Medellín, Colombia | spa |
dc.contributor.affiliation | Girurugwiro, P., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States | spa |
dc.contributor.affiliation | Yang, S., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States | spa |
dc.contributor.affiliation | Hovsapian, R., Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United States | spa |
dc.contributor.affiliation | Ordonez, J.C., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States | spa |
dc.identifier.doi | 10.1016/j.solener.2017.03.011 | |
dc.subject.keyword | Efficiency | eng |
dc.subject.keyword | Solar collector | eng |
dc.subject.keyword | Thermal losses | eng |
dc.subject.keyword | Transparent insulation material (TIM) | eng |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.abstract | The integration of Transparent Insulation Materials (TIMs) into Flat Plate Collectors (FPCs), Parabolic Trough Collectors (PTCs), and Central Receiver (CR) collectors is studied in this paper. A general model including optical and thermal analyses is developed. The effects of TIM's properties, such as the emittance, thermal conductivity, extinction coefficient, and thickness, on the collectors’ performance, are analyzed. At low absorber temperatures, performances of traditional-type collectors are relatively high. The efficiency of these collectors reduces dramatically at high temperatures due to the increment in heat losses. The incorporation of a TIM decreases thermal losses, leading to higher collectors’ efficiencies at high absorber temperatures. The main goal of this study is to determine the critical operation temperature from which thermal losses reduction overcome the optical efficiency losses due to a TIM integration. In general, for high performance collectors, TIMs are characterized by low emittances and thermal conductivities, high transmittances, and low extinction coefficients. © 2017 Elsevier Ltd | eng |
dc.creator.affiliation | Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States | spa |
dc.creator.affiliation | Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, Colombia | spa |
dc.creator.affiliation | Ingeniería Térmica Ltda, Medellín, Colombia | spa |
dc.creator.affiliation | Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United States | spa |
dc.relation.ispartofes | Solar Energy | spa |
dc.relation.references | Atkinson, C., Sansom, C.L., Almond, H.J., Shaw, C.P., Coatings for concentrating solar systems – a review (2015) Renew. Sustain. Energy Rev., 45, pp. 113-122 | spa |
dc.relation.references | Bahrehmand, D., Ameri, M., Energy and exergy analysis of different solar air collector systems with natural convection solar air collector systems with natural convection (2015) Renew. Energy, 74, pp. 357-368 | spa |
dc.relation.references | Bejan, A., Convection Heat Transfer (2013), fourth ed. WileyBenz, N., Next Generation Receivers (2007) Workshop NREL March 8–9 2007, , http://www.nrel.gov/csp/troughnet/pdfs/2007/benz_next_generation_receivers.pdf, (Accessed 11/23/2015) | spa |
dc.relation.references | Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., High temperature solar thermal central-receiver billboard design (2013) Sol. Energy, 97, pp. 356-368 | spa |
dc.relation.references | Cadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol. Energy, 107, pp. 202-209 | spa |
dc.relation.references | Capeillere, J., Toutant, A., Olalde, G., Boubault, A., Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight (2014) Sol. Energy, 110, pp. 174-187 | spa |
dc.relation.references | Chen, G., Doroshenko, A., Koltun, P., Shestopalov, K., Comparative field experimental investigations of different flat plate solar collectors (2015) Sol. Energy, 115, pp. 577-588 | spa |
dc.relation.references | Chwieduk, D., Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling (2014), first ed. Academic PressDeubener, J., Helsch, G., Moiseev, A., Bornhöft, H., Glasses for solar energy conversion systems (2009) J. Europ. Ceramic Soc., 29 (7), pp. 1203-1210 | spa |
dc.relation.references | Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth edition WileyEduardo, Z., Manuel, R.A., Concentrating Solar Thermal Power (2007) Handbook of Energy Efficiency and Renewable Energy, , CRC Press | spa |
dc.relation.references | Falcone, P.K., A handbook for solar central receiver design, SAND86-8009 (1986) Sandia National Laboratories | spa |
dc.relation.references | Farooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renew. Energy, 33, pp. 1275-1285 | spa |
dc.relation.references | Fernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14, pp. 1695-1721 | spa |
dc.relation.references | Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003) NREL report, NREL/TP-550-34169 | spa |
dc.relation.references | Garbrecht, O., Al-Sibai, F., Kneer, R., Wieghardt, K., CFD-simulation of a new receiver design for a molten salt solar power tower (2013) Sol. Energy, 90, pp. 94-106 | spa |
dc.relation.references | Ghoneim, A.A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb (2005) Int. J. Therm. Sci., 44 (1), pp. 95-105 | spa |
dc.relation.references | Girurugwiro, P., The volumetric absortion solar collector (2012), Dissertation: Florida State UniversityGoswami, D.Y., Kreith, F., Kreider, J.F., Principles of Solar Engineering (2000), second ed. Taylor & FrancisGupta, D., Solanki, S.C., Saini, J.S., Thermo-hydraulic performance of solar air heaters with roughened absorber plates (1997) Sol. Energy, 61, pp. 33-42 | spa |
dc.relation.references | Hellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renew. Energy, 28 (3), pp. 331-344 | spa |
dc.relation.references | Hirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol. Energy, 97, pp. 305-313 | spa |
dc.relation.references | Ho, C.D., Chen, T.C., Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached (2008) Renew. Energy, 33 (4), pp. 655-664 | spa |
dc.relation.references | Ho, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renew. Sustain. Energy Rev., 29, pp. 835-846 | spa |
dc.relation.references | Ho, C.Y., Chu, T.K., Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels (1977), American Iron and Steel Institute CINDAS report 45Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO2 Brayton cycles for solar-thermal energy (2013) Appl. Energy, 111, pp. 957-970 | spa |
dc.relation.references | Kalogirou, S.A., Solar thermal collectors and applications (2004) Progr. Energy Combust. Sci., 30, pp. 231-295 | spa |
dc.relation.references | Kalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver (2012) Energy, 48, pp. 298-306 | spa |
dc.relation.references | Karuppa, R.T., Pavan, P., Rajeev, R., Experimental investigation of a new solar flat plate collector (2012) Res. J. Eng. Sci., 1 (4), pp. 1-8 | spa |
dc.relation.references | Karwa, N., Jiang, L., Winston, R., Rosengarten, G., Receiver shape optimization for maximizing medium temperature CPC collector efficiency (2015) Sol. Energy, 122, pp. 529-546 | spa |
dc.relation.references | Kessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl. Energy, 133, pp. 206-223 | spa |
dc.relation.references | Kumar, K.R., Reddy, K.S., Thermal analysis of solar parabolic trough with porous disc receiver (2009) Appl. Energy, 86, pp. 1804-1812 | spa |
dc.relation.references | Lata, J.M., Rodríguez, M., Alvarez de Lara, M., High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants (2008) J. Sol. Energy Eng., 130 (2). , 021002-021002 | spa |
dc.relation.references | Lim, S., Kang, Y., Lee, H., Shin, S., Design optimization of a tubular solar receiver with a porous medium (2014) Appl. Therm. Eng., 62 (2), pp. 566-572 | spa |
dc.relation.references | Londoño-Hurtado, A., Rivera-Alvarez, A., Maximization of exergy output from volumetric absorption solar collectors (2003) J. Sol. Energy Eng., 125 (1), pp. 83-86 | spa |
dc.relation.references | Muñoz, J., Abánades, A., Analysis of internal helically finned tubes for parabolic trough design by CFD tools (2011) Appl. Energy, 88, pp. 4139-4149 | spa |
dc.relation.references | Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts (2016) Int. J. Therm. Sci., 99, pp. 238-257 | spa |
dc.relation.references | Ordonez-Malla, F., Optimization of a high temperature solar receiver by polydispersion of particles (2015), Dissertation: Universite Paris-EstOsorio, J.D., Hovsapian, R., Ordonez, J.C., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle (2016) Appl. Therm. Eng., 93, pp. 920-934 | spa |
dc.relation.references | Osorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368 | spa |
dc.relation.references | Ozisik, M.N., Radiative Transfer and Interactions With Conduction and Convection (1973), John Wiley and SonsPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120, Sandia National Laboratories (2002)Pye, J., Zheng, M., Asselineau, C.A., Coventry, J., An exergy analysis of tubular solar-thermal receivers with different working fluids (2014) International Conference on Concentrating Solar Power and Chemical Energy Systems - SolarPACES | spa |
dc.relation.references | Rodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl. Therm. Eng., 63, pp. 428-438 | spa |
dc.relation.references | Rodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc., 49, pp. 504-513 | spa |
dc.relation.references | Rommel, M., Wagner, A., Application of transparent insulation materials in improved flat-plate collectors and integrated collector storages (1992) Sol. Energy, 49 (5), pp. 371-380 | spa |
dc.relation.references | Saxena, A., Varun, El-Sebaii, A.A., A thermodynamic review of solar air heaters (2015) Renew. Sustain. Energy Rev., 43, pp. 863-890 | spa |
dc.relation.references | (2017) Schott optical glass datasheet, , http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, (Accessed: 02/21/2017) | spa |
dc.relation.references | Sharma, S.K., Kalamkar, V.R., Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–a review (2015) Renew. Sustain. Energy Rev., 41, pp. 413-435 | spa |
dc.relation.references | Soo Too, Y.C., Benito, R., Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications (2013) Appl. Therm. Eng., 50 (1), pp. 1076-1083 | spa |
dc.relation.references | Uhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc., 49, pp. 538-550 | spa |
dc.relation.references | Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110 | spa |
dc.relation.references | Wagner, M., Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. Thesis (2008), University of WisconsinWojcicki, D.J., Flat plate solar collector model that utilizes the typical day concept to predict performance output (2014), Dissertation: University Of Massachusetts Lowell (UML) No. 3580141Yang, M., Yang, X., Yang, X., Ding, J., Heat transfer enhancement and performance of the molten salt receiver of a solar power tower (2010) Appl. Energy, 87 (9), pp. 2808-2811 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |