Mostrar el registro sencillo del ítem

dc.creatorOsorio J.D.spa
dc.creatorRivera-Alvarez A.spa
dc.creatorGirurugwiro P.spa
dc.creatorYang S.spa
dc.creatorHovsapian R.spa
dc.creatorOrdonez J.C.spa
dc.date.accessioned2017-12-19T19:36:49Z
dc.date.available2017-12-19T19:36:49Z
dc.date.created2017spa
dc.identifier.issn0038092Xspa
dc.identifier.urihttp://hdl.handle.net/11407/4338
dc.language.isoengspa
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015655728&doi=10.1016%2fj.solener.2017.03.011&partnerID=40&md5=512f5a4ef64dcd364863fcd7278378dfspa
dc.sourceScopusspa
dc.sourcereponame:Repositorio Institucionalspa
dc.sourceinstname:Universidad de Medellínspa
dc.titleIntegration of transparent insulation materials into solar collector devicesspa
dc.typeArticlespa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessspa
dc.contributor.affiliationOsorio, J.D., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Facultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, Colombiaspa
dc.contributor.affiliationRivera-Alvarez, A., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United States, Ingeniería Térmica Ltda, Medellín, Colombiaspa
dc.contributor.affiliationGirurugwiro, P., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United Statesspa
dc.contributor.affiliationYang, S., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United Statesspa
dc.contributor.affiliationHovsapian, R., Idaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United Statesspa
dc.contributor.affiliationOrdonez, J.C., Department of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United Statesspa
dc.identifier.doi10.1016/j.solener.2017.03.011spa
dc.subject.keywordEfficiencyeng
dc.subject.keywordSolar collectoreng
dc.subject.keywordThermal losseseng
dc.subject.keywordTransparent insulation material (TIM)eng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractThe integration of Transparent Insulation Materials (TIMs) into Flat Plate Collectors (FPCs), Parabolic Trough Collectors (PTCs), and Central Receiver (CR) collectors is studied in this paper. A general model including optical and thermal analyses is developed. The effects of TIM's properties, such as the emittance, thermal conductivity, extinction coefficient, and thickness, on the collectors’ performance, are analyzed. At low absorber temperatures, performances of traditional-type collectors are relatively high. The efficiency of these collectors reduces dramatically at high temperatures due to the increment in heat losses. The incorporation of a TIM decreases thermal losses, leading to higher collectors’ efficiencies at high absorber temperatures. The main goal of this study is to determine the critical operation temperature from which thermal losses reduction overcome the optical efficiency losses due to a TIM integration. In general, for high performance collectors, TIMs are characterized by low emittances and thermal conductivities, high transmittances, and low extinction coefficients. © 2017 Elsevier Ltdeng
dc.source.bibliographicCitationAtkinson, C., Sansom, C.L., Almond, H.J., Shaw, C.P., Coatings for concentrating solar systems – a review (2015) Renew. Sustain. Energy Rev., 45, pp. 113-122spa
dc.source.bibliographicCitationBahrehmand, D., Ameri, M., Energy and exergy analysis of different solar air collector systems with natural convection solar air collector systems with natural convection (2015) Renew. Energy, 74, pp. 357-368spa
dc.source.bibliographicCitationBejan, A., Convection Heat Transfer (2013), fourth ed. WileyBenz, N., Next Generation Receivers (2007) Workshop NREL March 8–9 2007, , http://www.nrel.gov/csp/troughnet/pdfs/2007/benz_next_generation_receivers.pdf, (Accessed 11/23/2015)spa
dc.source.bibliographicCitationBoerema, N., Morrison, G., Taylor, R., Rosengarten, G., High temperature solar thermal central-receiver billboard design (2013) Sol. Energy, 97, pp. 356-368spa
dc.source.bibliographicCitationCadafalch, J., Consul, R., Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation (2014) Sol. Energy, 107, pp. 202-209spa
dc.source.bibliographicCitationCapeillere, J., Toutant, A., Olalde, G., Boubault, A., Thermomechanical behavior of a plate ceramic solar receiver irradiated by concentrated sunlight (2014) Sol. Energy, 110, pp. 174-187spa
dc.source.bibliographicCitationChen, G., Doroshenko, A., Koltun, P., Shestopalov, K., Comparative field experimental investigations of different flat plate solar collectors (2015) Sol. Energy, 115, pp. 577-588spa
dc.source.bibliographicCitationChwieduk, D., Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling (2014), first ed. Academic PressDeubener, J., Helsch, G., Moiseev, A., Bornhöft, H., Glasses for solar energy conversion systems (2009) J. Europ. Ceramic Soc., 29 (7), pp. 1203-1210spa
dc.source.bibliographicCitationDuffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth edition WileyEduardo, Z., Manuel, R.A., Concentrating Solar Thermal Power (2007) Handbook of Energy Efficiency and Renewable Energy, , CRC Pressspa
dc.source.bibliographicCitationFalcone, P.K., A handbook for solar central receiver design, SAND86-8009 (1986) Sandia National Laboratoriesspa
dc.source.bibliographicCitationFarooq, M., Raja, I.A., Optimisation of metal sputtered and electroplated substrates for solar selective coatings (2008) Renew. Energy, 33, pp. 1275-1285spa
dc.source.bibliographicCitationFernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14, pp. 1695-1721spa
dc.source.bibliographicCitationForristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003) NREL report, NREL/TP-550-34169spa
dc.source.bibliographicCitationGarbrecht, O., Al-Sibai, F., Kneer, R., Wieghardt, K., CFD-simulation of a new receiver design for a molten salt solar power tower (2013) Sol. Energy, 90, pp. 94-106spa
dc.source.bibliographicCitationGhoneim, A.A., Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb (2005) Int. J. Therm. Sci., 44 (1), pp. 95-105spa
dc.source.bibliographicCitationGirurugwiro, P., The volumetric absortion solar collector (2012), Dissertation: Florida State UniversityGoswami, D.Y., Kreith, F., Kreider, J.F., Principles of Solar Engineering (2000), second ed. Taylor & FrancisGupta, D., Solanki, S.C., Saini, J.S., Thermo-hydraulic performance of solar air heaters with roughened absorber plates (1997) Sol. Energy, 61, pp. 33-42spa
dc.source.bibliographicCitationHellstrom, B., Adsten, M., Nostell, P., Karlsson, B., Wackelgard, E., The impact of optical and thermal properties on the performance of flat plate solar collectors (2003) Renew. Energy, 28 (3), pp. 331-344spa
dc.source.bibliographicCitationHirasawa, S., Tsubota, R., Kawanami, T., Shirai, K., Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium (2013) Sol. Energy, 97, pp. 305-313spa
dc.source.bibliographicCitationHo, C.D., Chen, T.C., Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached (2008) Renew. Energy, 33 (4), pp. 655-664spa
dc.source.bibliographicCitationHo, C.K., Iverson, B.D., Review of high-temperature central receiver designs for concentrating solar power (2014) Renew. Sustain. Energy Rev., 29, pp. 835-846spa
dc.source.bibliographicCitationHo, C.Y., Chu, T.K., Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels (1977), American Iron and Steel Institute CINDAS report 45Iverson, B.D., Conboy, T.M., Pasch, J.J., Kruizenga, A.M., Supercritical CO2 Brayton cycles for solar-thermal energy (2013) Appl. Energy, 111, pp. 957-970spa
dc.source.bibliographicCitationKalogirou, S.A., Solar thermal collectors and applications (2004) Progr. Energy Combust. Sci., 30, pp. 231-295spa
dc.source.bibliographicCitationKalogirou, S.A., A detailed thermal model of a parabolic trough collector receiver (2012) Energy, 48, pp. 298-306spa
dc.source.bibliographicCitationKaruppa, R.T., Pavan, P., Rajeev, R., Experimental investigation of a new solar flat plate collector (2012) Res. J. Eng. Sci., 1 (4), pp. 1-8spa
dc.source.bibliographicCitationKarwa, N., Jiang, L., Winston, R., Rosengarten, G., Receiver shape optimization for maximizing medium temperature CPC collector efficiency (2015) Sol. Energy, 122, pp. 529-546spa
dc.source.bibliographicCitationKessentini, H., Castro, J., Capdevila, R., Oliva, A., Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system (2014) Appl. Energy, 133, pp. 206-223spa
dc.source.bibliographicCitationKumar, K.R., Reddy, K.S., Thermal analysis of solar parabolic trough with porous disc receiver (2009) Appl. Energy, 86, pp. 1804-1812spa
dc.source.bibliographicCitationLata, J.M., Rodríguez, M., Alvarez de Lara, M., High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants (2008) J. Sol. Energy Eng., 130 (2). , 021002-021002spa
dc.source.bibliographicCitationLim, S., Kang, Y., Lee, H., Shin, S., Design optimization of a tubular solar receiver with a porous medium (2014) Appl. Therm. Eng., 62 (2), pp. 566-572spa
dc.source.bibliographicCitationLondoño-Hurtado, A., Rivera-Alvarez, A., Maximization of exergy output from volumetric absorption solar collectors (2003) J. Sol. Energy Eng., 125 (1), pp. 83-86spa
dc.source.bibliographicCitationMuñoz, J., Abánades, A., Analysis of internal helically finned tubes for parabolic trough design by CFD tools (2011) Appl. Energy, 88, pp. 4139-4149spa
dc.source.bibliographicCitationMwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts (2016) Int. J. Therm. Sci., 99, pp. 238-257spa
dc.source.bibliographicCitationOrdonez-Malla, F., Optimization of a high temperature solar receiver by polydispersion of particles (2015), Dissertation: Universite Paris-EstOsorio, J.D., Hovsapian, R., Ordonez, J.C., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle (2016) Appl. Therm. Eng., 93, pp. 920-934spa
dc.source.bibliographicCitationOsorio, J.D., Hovsapian, R., Ordonez, J.C., Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions (2016) Energy, 115, pp. 353-368spa
dc.source.bibliographicCitationOzisik, M.N., Radiative Transfer and Interactions With Conduction and Convection (1973), John Wiley and SonsPacheco, J.E., Final test and evaluation results from the solar two project, SAND2002-0120, Sandia National Laboratories (2002)Pye, J., Zheng, M., Asselineau, C.A., Coventry, J., An exergy analysis of tubular solar-thermal receivers with different working fluids (2014) International Conference on Concentrating Solar Power and Chemical Energy Systems - SolarPACESspa
dc.source.bibliographicCitationRodríguez-Sánchez, M.R., Soria-Verdugo, A., Almendros-Ibáñez, J.A., Acosta-Iborra, A., Santana, D., Thermal design guidelines of solar power towers (2014) Appl. Therm. Eng., 63, pp. 428-438spa
dc.source.bibliographicCitationRodríguez-Sánchez, M.R., Sánchez-González, A., Marugán-Cruz, C., Santana, D., New designs of molten-salt tubular-receiver for solar power tower (2014) Energy Proc., 49, pp. 504-513spa
dc.source.bibliographicCitationRommel, M., Wagner, A., Application of transparent insulation materials in improved flat-plate collectors and integrated collector storages (1992) Sol. Energy, 49 (5), pp. 371-380spa
dc.source.bibliographicCitationSaxena, A., Varun, El-Sebaii, A.A., A thermodynamic review of solar air heaters (2015) Renew. Sustain. Energy Rev., 43, pp. 863-890spa
dc.source.bibliographicCitation(2017) Schott optical glass datasheet, , http://www.us.schott.com/d/advanced_optics/102fefee-c1cb-4772-a784-1ef2e328eb4c/1.1/schott-optical-glass-collection-datasheets-english-us-17012017.pdf, (Accessed: 02/21/2017)spa
dc.source.bibliographicCitationSharma, S.K., Kalamkar, V.R., Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–a review (2015) Renew. Sustain. Energy Rev., 41, pp. 413-435spa
dc.source.bibliographicCitationSoo Too, Y.C., Benito, R., Enhancing heat transfer in air tubular absorbers for concentrated solar thermal applications (2013) Appl. Therm. Eng., 50 (1), pp. 1076-1083spa
dc.source.bibliographicCitationUhlig, R., Flesch, R., Gobereit, B., Giuliano, S., Liedke, P., Strategies enhancing efficiency of cavity receivers (2014) Energy Proc., 49, pp. 538-550spa
dc.source.bibliographicCitationVasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110spa
dc.source.bibliographicCitationWagner, M., Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants. Thesis (2008), University of WisconsinWojcicki, D.J., Flat plate solar collector model that utilizes the typical day concept to predict performance output (2014), Dissertation: University Of Massachusetts Lowell (UML) No. 3580141Yang, M., Yang, X., Yang, X., Ding, J., Heat transfer enhancement and performance of the molten salt receiver of a solar power tower (2010) Appl. Energy, 87 (9), pp. 2808-2811spa
dc.creator.affiliationDepartment of Mechanical Engineering, Energy and Sustainability Center, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, United Statesspa
dc.creator.affiliationFacultad de Ingeniería, Ingeniería en Energía, Universidad de Medellín, Medellín, Colombiaspa
dc.creator.affiliationIngeniería Térmica Ltda, Medellín, Colombiaspa
dc.creator.affiliationIdaho National Laboratory - Power & Energy Systems Department, Idaho Falls, ID, United Statesspa
dc.relation.ispartofesSolar Energyspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem