Mostrar el registro sencillo del ítem

dc.creatorVélez M.I., Blessent D., Córdoba S., López-Sánchez J., Raymond J.spa
dc.date.accessioned2018-04-13T16:31:48Z
dc.date.available2018-04-13T16:31:48Z
dc.date.created2018
dc.identifier.issn8959811
dc.identifier.urihttp://hdl.handle.net/11407/4532
dc.descriptionThis work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10−2 MWt m−1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10−2 MW m−1 (σ = 2.91 × 10−3 MW m−1) and 1.88 × 10−2 MW/m (σ = 2.91 × 10−3 MW m−1) for the two modeling scenario considered. © 2017 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85035035607&doi=10.1016%2fj.jsames.2017.11.011&partnerID=40&md5=a86e8869a49fd4f37c109c5b03d8add4spa
dc.sourceScopusspa
dc.titleGeothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transferspa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.contributor.affiliationInstitut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Qc, Canada; Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, Colombiaspa
dc.identifier.doi10.1016/j.jsames.2017.11.011
dc.subject.keywordColombia; Geothermal potential; Nevado del Ruiz; OpenGeoSys; Thermal conductivityeng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractThis work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10−2 MWt m−1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10−2 MW m−1 (σ = 2.91 × 10−3 MW m−1) and 1.88 × 10−2 MW/m (σ = 2.91 × 10−3 MW m−1) for the two modeling scenario considered. © 2017 Elsevier Ltdeng
dc.creator.affiliationVélez, M.I., Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Qc, Canada; Blessent, D., Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, Colombia, Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, Colombia; Córdoba, S., Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, Colombia; López-Sánchez, J., Universidad de Medellín, Programa de Ingeniería Ambiental, Medellín, Colombia; Raymond, J., Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, Qc, Canadaspa
dc.relation.ispartofesJournal of South American Earth Sciencesspa
dc.relation.referencesAlfaro, C., Improvement of Perception of the Geothermal Energy as a Potential Source of Electrical Energy in Colombia, Country Update. Paper Presented at the World Geothermal Congress (2015), p. 15. , Melbourne, Australia; Almaguer, J.L., Estudios magnetotelúrico con fines de interés geotérmico en sector Norte del Nevado del Ruíz, Colombia (2013), p. 139. , MSc thesis Universidad Nacional Autónoma de México; ASTM - American Society for Testing and Materials, (2008) Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, Vol. D5334–08), p. 9; Arango, E.E., Buitrago, A.J., Cataldi, R., Ferrara, G.C., Panichi, C., Villegas, V.J., Preliminary study on the Ruiz geothermal project (Colombia) (1970) Geothermics, 2 (1), pp. 43-56; Aravena, D., Muñoz, M., Morata, D., Lahsen, A., Parada, M.Á., Dobson, P., Assessment of high enthalpy geothermal resources and promising areas of Chile (2016) Geothermics, 59, pp. 1-13. , Part A; Barylo, A., Assesment of the energy potential of the Beregovsky geothermal system (2000) Ukraine Geothermal Training Programme, pp. 29-42. , Iceland; Bédard, K., Comeau, F.-A., Millet, E., Raymond, J., Malo, M., Gloaguen, E., Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent. Research Report 1659 (2016), p. 100. , Institut national de la recherche scientifique - Centre Eau Terre Environnement; Bernal, N.F., Ramirez, G., Alfaro, C.V., Mapa geotérmico de Colombia. Versión 1.0. Escala 1:1’500.000 (2000) Memoria explicativa. Exploración y Evaluación de Recursos Geotérmicos, p. 51. , Instituto de investigación e información geocientífica, minero-ambiental y nuclea INGEOMINAS; Bertani, R., Geothermal energy: an overview on resources and potential (2009) Proceedings of the International Conference on National Development of Geothermal Energy Use and International Course/EGEC Business Seminar on Organization of Successful Development of a Geothermal Project, p. 19. , k. Popovski A. Vranovska S. Popovska Vasilevska; Bertani, R., Geothermal power generation in the world 2010-2014 update report (2016) Geothermics, 60, pp. 31-43. , https://doi.org/10.1016/j.geothermics.2015.11.003; Böttcher, N., Watanabe, N., Görke, U.-J., Kolditz, O., Geoenergy Modeling I. Geothermal Processes in Fractured Porous Media (2016), p. 117. , SpringerBriefs in Energy. Computational Modeling of Energy Systems; Bucker, C., Rybach, L., A simple method to determine heat production from gamma-ray logs (1996) Mar. Petroleum Geol., 13 (4), pp. 373-375; Calcagno, P., Baujard, C., Guillou-Frottier, L., Dagallier, A., Genter, A., Estimation of the deep geothermal potential within the Tertiary Limagne basin (French Massif Central): an integrated 3D geological and thermal approach (2014) Geothermics, 51, pp. 496-508. , https://doi.org/10.1016/j.geothermics.2014.02.002; Carslaw, H.S., Jaeger, J.C., Conduction of Heat in Solids (1947), Oxford University Press Oxford,UK; CHEC - Central Hidroeléctrica de Caldas, Instituto Colombiano de Energía Eléctrica, Consultoría Técnica Colombiana Ltda, Geotérmica Italiana, Investigación Geotérmica Macizo Volcánico del Ruíz (1983) Fase II, vols. II III. , A. Etapa Bogotá); Clauser, C., Thermal storage and transport properties of rocks, II: thermal conductivity and diffusivity (2014) Encyclopedia of Solid Earth Geophysics. Part of the Series Encyclopedia of Earth Sciences Series, pp. 1431-1448. , Harsh K. Gupta Springer Netherlands; CORPOCALDAS, Plan de manejo de los páramos del departamento de Caldas (2007), p. 133. , Technical report; Decagon Devices Inc, KD2 Pro Thermal Properties Analyzer Operator's Manual Version 12 (2008), p. 72. , Decagon Devices, Inc; DiPippo, R., Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact (2012), p. 624. , 3 ed. Butterworth-Heinemann Massachusetts, UE; Forero, J.A., Caracterización de las alteraciones hidrotermales en el flanco Noroccidental del Volcán Nevado del Ruiz, Colombia (2012), p. 121. , MSc thesis Universidad Nacional de Colombia Bogotá; Freeze, A.R., Cherry, J.A., Groundwater (1979), p. 604. , Prentice-Hall; Fridleifsson, I.B., Status of geothermal energy amongst the world's energy sources (2003) Geothermics, 32 (4-6), pp. 379-388. , https://doi.org/10.1016/j.geothermics.2003.07.004; Geuzaine, C., Remacle, J.-F., A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities (2009) Int. J. Numer. Methods Eng., 79 (11), pp. 1309-1331; González-Garcia, J., Jessell, M., A 3D geological model for the Ruiz-Tolima Volcanic Massif (Colombia): assessment of geological uncertainty using a stochastic approach based on Bézier curve design (2016) Tectonophysics, 687 (26), pp. 139-157; González-Garcia, J., Hauser, J., Annetts, D., Franco, J., Vallejo, E., Regenauer-Lieb, K., Nevado del Ruiz volcano (Colombia): a 3D model combining geological and geophysical information (2015) Proceedings World Geothermal Congress, , (Melbourne, Australia); González, H., Geología de las planchas 206 Manizales y 225 Nevado del Ruíz. Memoria explicativa (2001), p. 93. , Instituto de investigación e información geocientífica, minero-ambiental y nuclear, INGEOMINAS Bogotá; INGEOMINAS, Mapa de flujos de calor- (2000); Invernizzi, C., Pierantoni, P.P., Chiodi, A., Maffucci, R., Corrado, S., Baez, W., Tassi, F., Viramonte, J., Preliminary assessment of the geothermal potential of Rosario de la Frontera area (Salta, NW Argentina): insight from hydro-geological, hydro-geochemical and structural investigations (2014) J. S. Am. Earth Sci., 54, pp. 20-36; Lee, K.C., Classification of geothermal resources – an engineering approach (1996) Proceedings, Twenty-first Workshop on Geothermal Reservoir Engineering, Standford University, Stanford, California, January 22–24, p. 8. , SGP-TR-151; Londoño, J.M., Sudo, Y., Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia) (2002) J. Volcanol. Geotherm. Res., 119 (1-4), pp. 61-87. , https://doi.org/10.1016/S0377-0273 (02)00306-2; Mejía, E., Rayo, L., Méndez, J., Echeverri, J., Geothermal development in Colombia (2014) Short Course VI on Utilization of Low- and Medium-enthalpy Geothermal Resources and Financial Aspects of Utilization, p. 7. , Santa Tecla, El Salvador; Mejía, E., Velandia, F., Zuluaga, C.A., López, J.A., Cramer, T., Análisis estructural al noreste del Volcán Nevado de Ruíz Colombia – aporte a la Exploración Geotérmica (2012) Bol. Geol., 34 (1), pp. 27-41; Melson, W.G., Allan, J.F., Jerez, D.R., Nelen, J., Calvache, M.L., Williams, S.N., Fournelle, J., Perfit, M., Water contents, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia (1990) J. Volcanol. Geotherm. Res., 41 (1), pp. 97-126. , https://doi.org/10.1016/0377-0273 (90)90085-T, November 13, 1985; Monsalve, M.L., Rodriguez, G.I., Mendez, R.A., Bernal, N.F., Geology of the well Nereidas 1, Nevado del Ruiz volcano (1998) Colomb. Geotherm. Resour. Counc., 22, p. 6; Mosquera, D., Marín, P., Vesga, C., González, H., Geología de la Plancha 225 Nevado del Ruíz (1998); Mosquera, D., Marín, P., Vesga, C., González, H., Maya, M., Geología de la Plancha 206 Manizales (1998); Muffler, P., Cataldi, R., Methods for regional assessment of geothermal resources (1978) Geothermics, 7 (2), pp. 53-89; Naranjo, J.L., Sigurdsson, H., Carey, S.N., Fritz, W., Eruption of the Nevado del Ruiz Volcano, Colombia, On 13 November 1985: tephra Fall and Lahars (1986) Science, 233 (4767), pp. 961-963; Ofwona, C., Geothermal Resource Assessment-Case Example, Olkaria I (2008), p. 8. , Geothermal Training Programme; Parques Nacionales Naturales de Colombia - Dirección Territorial Noroccidente, Plan de Manejo 2007-2011 (2007), p. 37. , Parque Nacional Natural de Los Nevados; Rayo-Rocha, L., Zuluaga, C.A., Procesos magmáticos en el volcán Nevado del Ruiz: un análisis cuantitativo textural (2011) Bol. Geol., 33 (2), pp. 59-72; Rojas, O.E., Contribución al modelo geotérmico asociado al sistema volcánico Nevado del Ruiz-Colombia, por medio del análisis de la relación entre la susceptibilidad magnética, conductividad eléctrica y térmica del sistema (2012), p. 183. , MSc thesis Universidad Nacional de Colombia Bogotá; Stefánsson, V., Estimate of the World Geothermal Potential (1998), p. 10. , The United Nations University. 20th Anniversary Workshop Geothermal training programme, Iceland; Stefánsson, V., World geothermal assessment (2005) Proceedings World Geothermal Congress, p. 6. , Amtalya, Turkey; Stix, J., Layne, G.D., Williams, S.N., Mechanisms of degassing at Nevado del Ruiz volcano, Colombia (2003) J. Geol. Soc. Lond., 160, pp. 507-521; Thouret, J.-C., Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia (1990) J. Volcanol. Geotherm. Res., 41 (1), pp. 177-201. , https://doi.org/10.1016/0377-0273 (90)90088-W; Trenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H.P., Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations (2002) J. S. Am. Earth Sci., 15 (2), pp. 157-171. , https://doi.org/10.1016/S0895-9811 (02)00018-4; Turcotte, D.L., Schubert, G., Geodynamics (2014), p. 657. , Cambridge Univerity Press; Vatin-Pérignon, N., Goemans, P., Oliver, R.A., Parra, E., Evaluation of magmatic processes for the products of the Nevado del Ruiz Volcano, Colombia from geochemical and petrological data (1990) J. Volcanol. Geotherm. Res., 41 (1-4), pp. 153-176; Walsh, W., Geothermal resource assessment of the clarke lake gas field, fort nelson, british columbia (2013) Bull. Can. Petroleum Geol., 61 (3), pp. 241-251; Waples, D., Waples, J., A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks (2004) Nat. Resour. Res., 13 (2), pp. 97-122; Westaway, R., Younger, P.L., Accounting for palaeoclimate and topography: a rigorous approach to correction of the British geothermal dataset (2013) Geothermics, 48, pp. 31-51; Williams, C.F., Reed, M.J., Mariner, R.H., A review of methods applied by the US Geological Survey in the assessment of identified geothermal resources (2008) U. S. Geol. Surv. Open-File Rep., 1296 (27), p. 30; Yang, F., Liu, S., Liu, J., Pang, Z., Zhou, D., Combined Monte Carlo simulation and geological modeling for geothermal resource assessment: a case study of the xiongxian geothermal field, China (2015) World Geothermal Congress, p. 8. , Melbourne, Australiaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem