Mostrar el registro sencillo del ítem

dc.creatorOsorio, J.D.spa
dc.creatorRivera-Alvarez, A.spa
dc.date.accessioned2018-10-31T13:09:03Z
dc.date.available2018-10-31T13:09:03Z
dc.date.created2019
dc.identifier.issn9601481
dc.identifier.urihttp://hdl.handle.net/11407/4841
dc.descriptionIn this work, the performance of Parabolic Trough Collectors (PTCs) with Double Glass Envelope (DGE) is studied. A one-dimensional model comprising optical and thermal analyses is developed. The effect of an Inner Glass Envelope (IGE), thermal emittance of the envelopes, and vacuum conditions in the two resulting annuli are analyzed in detail and compared with the performance of a traditional PTC. The incorporation of an additional envelope into a traditional PTC reduces heat losses. At high operating temperatures, the reduction in thermal losses achieved with the DGE PTC leads to a superior efficiency. It is found that an IGE having low emittance values could be used to reduce heat losses and replace the vacuum in conventional PTCs. In addition, in a DGE PTC, vacuum is more important in the annulus between the absorber pipe and the IGE. The effect of solar irradiance on the performance of a DGE PTC is also studied considering clear sky and partially cloudy sky day conditions. In general, higher solar irradiance values favor collectors' efficiency. Finally, the efficiency of a DGE PTC is analyzed considering a commercially architectural glass and a glass for solar applications. The DGE PTC with IGE made of a glass for solar applications exhibits higher performance than a traditional PTC at high temperatures. However, a detailed economic analysis is required in order to determine the total energy cost with the proposed DGE PTC concept. Using a DGE improves the collector efficiency at high temperatures especially during partially cloudy sky days. © 2018 Elsevier Ltdspa
dc.language.isoeng
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053207099&doi=10.1016%2fj.renene.2018.06.024&partnerID=40&md5=25163b132cad85c9ef7ba4bd3b552da6spa
dc.sourceScopusspa
dc.subjectDouble Glass Envelope (DGE)spa
dc.subjectEfficiencyspa
dc.subjectParabolic Trough Collector (PTC)spa
dc.subjectSolar irradiancespa
dc.subjectThermal emittancespa
dc.subjectThermal lossesspa
dc.subjectVacuum conditionsspa
dc.titlePerformance analysis of Parabolic Trough Collectors with Double Glass Envelopespa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.contributor.affiliationOsorio, J.D., Universidad de Medellín; Ingeniería Térmica Ltda;Rivera-Alvarez, A., Ingeniería Térmica Ltda; Fundación Ergonspa
dc.identifier.doi10.1016/j.renene.2018.06.024
dc.relation.citationvolume130
dc.relation.citationstartpage1092
dc.relation.citationendpage1107
dc.publisher.facultyFacultad de Ingenieríasspa
dc.relation.ispartofesRenewable Energyspa
dc.relation.referencesHafez, A.Z., Attia, A.M., Eltwab, H.S., ElKousy, A.O., Afifi, A.A., AbdElhamid, A.G., AbdElqader, A.N., Ismail, I.M., Design analysis of solar parabolic trough thermal collectors (2018) Renew. Sustain. Energy Rev., 82, pp. 1215-1260;Kumaresan, G., Sudhakar, P., Santosh, R., Velraj, R., Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors (2017) Renew. Sustain. Energy Rev., 77, pp. 1363-1374;Sandeep, H.M., Arunachala, U.C., Solar parabolic trough collectors: a review on heat transfer augmentation techniques (2017) Renew. Sustain. Energy Rev., 69, pp. 1218-1231;Daniel, P., Joshi, Y., Das, A.K., Numerical investigation of parabolic trough receiver performance with outer vacuum shell (2011) Sol. Energy, 85 (9), pp. 1910-1914;Jebasingh, V.K., Joselin Herbert, G.M., A review of solar parabolic trough collector (2016) Renew. Sustain. Energy Rev., 54, pp. 1085-1091;Fernández-García, A., Zarza, E., Valenzuela, L., Pérez, M., Parabolic-trough solar collectors and their applications (2010) Renew. Sustain. Energy Rev., 14 (7), pp. 1695-1721;Wu, Y.T., Liu, S.W., Xiong, Y.X., Ma, C.F., Ding, Y.L., Experimental study on the heat transfer characteristics of a low melting point salt in a parabolic trough solar collector system (2015) Appl. Therm. Eng., 89, pp. 748-754;Forristall, R., Heat Transfer Analysis and Modelling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver (2003), National Renewable Energy Laboratory NREL/TP-550e34169;Wu, Z., Li, S., Yuan, G., Lei, D., Wang, Z., Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver (2014) Appl. Energy, 113, pp. 902-911;Salgado Conrado, L., Rodriguez-Pulido, A., Calderón, G., Thermal performance of parabolic trough solar collectors (2017) Renew. Sustain. Energy Rev., 67, pp. 1345-1359;Chafie, M., Aissa, M.F.B., Guizani, A., Energetic end exergetic performance of a parabolic trough collector receiver: an experimental study (2018) J. Clean. Prod., 171, pp. 285-296;Patil, R.G., Panse, S.V., Joshi, J.B., Optimization of non-evacuated receiver of solar collector having non-uniform temperature distribution for minimum heat loss (2014) Energy Convers. Manag., 85, pp. 70-84;Chandra, Y.P., Singh, A., Mohapatra, S.K., Kesari, J.P., Rana, L., Numerical optimization and convective thermal loss analysis of improved solar parabolic trough collector receiver system with one sided thermal insulation (2017) Sol. Energy, 148, pp. 36-48;Zou, B., Dong, J., Yao, Y., Jiang, Y., A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo Ray Tracing method based on theoretical analysis (2017) Sol. Energy, 147, pp. 189-201;Guo, J., Huai, X., Liu, Z., Performance investigation of parabolic trough solar receiver (2016) Appl. Therm. Eng., 95, pp. 357-364;Lu, J., Yuan, Q., Ding, J., Wang, W., Liang, J., Experimental studies on nonuniform heat transfer and deformation performances for trough solar receiver (2016) Appl. Therm. Eng., 109, pp. 497-506;Xu, L., Wang, Z., Li, X., Yuan, G., Sun, F., Lei, D., Li, S., A comparison of three test methods for determining the thermal performance of parabolic trough solar collectors (2014) Sol. Energy, 99, pp. 11-27;Cheng, J., Wang, C., Wang, W., Du, X., Liu, Y., Xue, Y., Wang, T., Chen, B., Improvement of thermal stability in the solar selective absorbing Mo-Al2O3 coating (2013) Sol. Energy Mat. Sol. Cells, 109, pp. 204-208;Céspedes, E., Wirz, M., Sánchez-García, J.A., Alvarez-Fraga, L., Escobar-Galindo, R., Prieto, C., Novel Mo-Si3N4 based selective coating for high temperature concentrating solar power applications (2014) Sol. Energy Mat. Sol. Cells, 122, pp. 217-225;Zhang, K., Hao, L., Du, M., Mi, J., Wang, J., Meng, J., A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings (2017) Renew. Sustain. Energy Rev., 67, pp. 1282-1299;Navarro-Hermoso, J.L., Espinosa-Rueda, G., Heras, C., Salinas, I., Martinez, N., Gallas, M., Parabolic trough solar receivers characterization using specific test bench for transmittance, absorptance and heat loss simultaneous measurement (2016) Sol. Energy, 136, pp. 268-277;O'Keeffea, G.J., Mitchella, S.L., Myersb, T.G., Cregana, V., Modelling the efficiency of a nanofluid-based direct absorption parabolic trough solar collector (2018) Sol. Energy, 159, pp. 44-54;Kasaeian, A., Daneshazarian, R., Pourfayaz, F., Comparative study of different nanofluids applied in a trough collector with glass-glass absorber tube (2017) J. Mol. Liq., 234, pp. 315-323;Subramani, J., Nagarajan, P.K., Mahian, O., Sathyamurthy, R., Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime (2018) Renew. Energy, 119, pp. 19-31;Mwesigye, A., Huan, Z., Meyer, J.P., Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol® VP-1 nanofluid (2016) Energy Convers. Manag., 120, pp. 449-465;Mwesigye, A., Bello-Ochende, T., Meyer, J.P., Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts (2014) Appl. Energy, 136, pp. 989-1003;Reddy, K.S., Kumar, K.R., Ajay, C.S., Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector (2015) Renew. Energy, 77, pp. 308-319;Fuqiang, W., Qingzhi, L., Huaizhi, H., Jianyu, T., Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics (2016) Appl. Energy, 164, pp. 411-424;Huang, Z., Yu, G.L., Li, Z.Y., Tao, W.Q., Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins (2015) Energy Proced., 69, pp. 1306-1316;Osorio, J.D., Rivera-Alvarez, A., Girurugwiro, P., Yang, S., Hovsapian, R., Ordonez, J.C., Integration of transparent insulation materials into solar collector devices (2017) Sol. Energy, 147, pp. 8-21;Wang, Q., Pei, G., Honglun, Y., Munir, A., Mingke, H., Performance study of a parabolic trough solar collector with an inner radiation shield (2016) Bulg. Chem. Commun., 48 (E), pp. 77-87;Wirz, M., Petit, J., Haselbacher, A., Steinfeld, A., Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators (2014) Sol. Energy, 107, pp. 398-414;Zhang, L., Yu, Z., Fan, L., Wang, W., Chen, H., Hu, Y., Fan, J., Cen, K., An experimental investigation of the heat losses of a U-type solar heat pipe receiver of a parabolic trough collector-based natural circulation steam generation system (2013) Renew. Energy, 57, pp. 262-268;Vasquez-Padilla, R., Demirkaya, G., Goswami, D.Y., Stefanakos, E., Rahman, M.M., Heat transfer analysis of parabolic trough solar receiver (2011) Appl. Energy, 88, pp. 5097-5110;Fan, M., Liang, H., You, S., Zhang, H., Zheng, W., Xia, J., Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector (2018) Energy, 142, pp. 920-931;Dudley, V.E., Kolb, G.J., Sloan, M., Kearney, D., Test Results: SGES LS-2 Solar Collector. Technical Report SAND-94-1884 (1994), Sandia National Laboratory;Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes (2013), fourth ed. Wiley;Incropera, F., DeWitt, D., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer (2007), sixth ed. John Wiley and Sons New York;Gnielinski, V., New equations for heat and mass transfer in the turbulent flow in pipes and channels (1975) Int. Chem. Eng., 16 (2), pp. 359-363;Ratzel, A., Hickox, C., Gartling, D., Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries (1979) J. Heat Transf., 101 (1), pp. 108-113;Marshal, N., Gas Encyclopedia (1976), Elsevier New York;Bejan, A., Convection Heat Transfer (1995), second ed. John Wiley & Sons New York;Giovannetti, F., Föste, S., Ehrmann, N., Rockendorf, G., High transmittance, low emissivity glass covers for flat plate collectors: applications and performance (2014) Sol. Energy, 104, pp. 52-59;Kalogirou, S.A., Solar thermal collectors and applications (2004) Prog. Energy Combust., 30 (3), pp. 231-295;Burkholder, F., Kutscher, C., (2009) Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver, , National Renewable Energy Laboratory NREL/TP-550-45633;Lawrence Berkeley National Laboratory (LBNL) (2018), http://windowoptics.lbl.gov/data/igdb, Version 59;Ferrara, M., Castaldo, A., Esposito, S., D'Angelo, A., Guglielmo, A., Antonaia, A., AlN-Ag based low-emission sputtered coatings for high visible transmittance window (2016) Surf. Coating. Technol., 295, pp. 2-7spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem