Mostrar el registro sencillo del ítem

dc.creatorMoreno D.spa
dc.creatorLopez-Sanchez J.spa
dc.creatorBlessent D.spa
dc.creatorRaymond J.spa
dc.date.accessioned2018-10-31T13:44:18Z
dc.date.available2018-10-31T13:44:18Z
dc.date.created2018
dc.identifier.issn8959811
dc.identifier.urihttp://hdl.handle.net/11407/4859
dc.descriptionThe Nevado del Ruiz Volcano is an area of great interest for future geothermal exploitation in Colombia facing exploration challenges as hydrothermal fluids originate deep into the fractured basement. Fieldwork conducted on the Northwest of this volcano confirmed the existence of fault zones and enabled collection of thirty rock samples from outcrops. Permeability of these samples was then measured in the laboratory with a steady-state gas permeameter, taking into account the Klinkenberg correction. The Porchet method allowed to obtain an estimation of in situ hydraulic conductivity in fault zones directly in the field. Thermal conductivity and heat capacity of the rock units were estimated from previous studies. 2D heat transfer and groundwater flow in porous fractured medium were simulated in the study area, using the free modeling package OpenGeoSys with data collected during fieldwork. Three modeling scenarios were considered, investigating the influence of fault dip in groundwater flow and heat transfer processes. It was possible to reproduce the temperature measured at the Hotel Termales hot spring, where the Samaná Sur fault appears to behave as a pathway for geothermal fluids. It was additionally found that fault dip has an influence on the simulated temperatures. When the dip is in favor of the fluid flow (<90° facing fluid flow), the simulated surface temperature increases; on the other hand, if the dip of fault is opposite to the fluid flow (>90° facing fluid flow), the simulated surface temperature decreases. © 2018 Elsevier Ltdspa
dc.language.isoeng
dc.publisherElsevier Ltdspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85051810002&doi=10.1016%2fj.jsames.2018.08.008&partnerID=40&md5=da080c4e09b518ca77b869cfde214a82spa
dc.sourceScopusspa
dc.subjectFault zonesspa
dc.subjectGeothermal energyspa
dc.subjectGroundwater flowspa
dc.subjectHeat transferspa
dc.subjectNevado del Ruiz Colombiaspa
dc.subjectOpenGeoSysspa
dc.titleFault characterization and heat-transfer modeling to the Northwest of Nevado del Ruiz Volcanospa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.contributor.affiliationMoreno, D., Universidad de Medellín;Lopez-Sanchez, J., Universidad de Medellín;Blessent, D., Universidad de Medellín;Raymond, J., Institut National de La Recherche Scientifiquespa
dc.identifier.doi10.1016/j.jsames.2018.08.008
dc.relation.citationvolume88
dc.relation.citationstartpage50
dc.relation.citationendpage63
dc.publisher.facultyFacultad de Ingenieríasspa
dc.relation.ispartofesJournal of South American Earth Sciencesspa
dc.relation.references"Alfaro, C., Improvement of perception of the geothermal energy as a potential source of electrical energy in Colombia, country update (2015) Paper Presented at the World Geothermal Congress, Melbourne, Australia, p. 15;Almaguer, J.L., Estudios magnetotelúrico con fines de interés geotérmico en sector Norte del Nevado del Ruíz, Colombia (2013), p. 139. , MSc thesis, Universidad Nacional Autónoma de México;(1998) Recommended Practices for Core Analysis, 2, p. 236;Arango, E.E., Buitrago, A.J., Cataldi, R., Ferrara, G.C., Panichi, C., Villegas, V.J., Preliminary study on the Ruiz geothermal project (Colombia) (1970) Geothermics, 2, pp. 43-56;Aravena, D., Muñoz, M., Morata, D., Lahsen, A., Parada, M.Á., Dobson, P., Assessment of high enthalpy geothermal resources and promising areas of Chile (2016) Geothermics, 59, pp. 1-13;Bakhsh, K., Nakagawa, M., Arshad, M., Dunnington, L., Modeling thermal breakthrough in sedimentary geothermal system, using COMSOL multiphysics (2016) Proceedings 41st Workshop on Geothermal Reservoir Engineering, p. 11. , Stanford University Stanford, California February 22-24. SGP-TR-209;Benavente, O., Tassi, F., Reicha, M., Aguilera, F., Capecchiacci, F., Gutiérrez, F., Vaselli, O., Rizzo, A., Chemical and isotopic features of cold and thermal fluids discharged in the Southern Volcanic Zone between 32.5°S and 36°S: insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile (2016) Chem. Geol., 420, pp. 97-113;Bernal, N.F., Ramirez, G., Alfaro, C.V., Mapa geotérmico de Colombia. Versión 1.0. Escala 1:1'500.000. Memoria explicativa. Exploración y Evaluación de Recursos Geotérmicos (2000), p. 51. , Instituto de investigación e información geocientífica, minero-ambiental y nuclea INGEOMINAS;Bertani, R., Geothermal power generation in the world 2010-2014 update report (2016) Geothermics, 60, pp. 31-43. , https://doi.org/10.1016/j.geothermics.2015.11.003;Böttcher, N., Watanabe, N., Görke, U.-J., Kolditz, O., Geoenergy Modeling I. Geothermal Processes in Fractured Porous Media (2016), p. 117. , SpringerBriefs in Energy. Computational Modeling of Energy Systems;Caine, J.S., Evans, J.P., Forster, C.B., Fault zone architecture and permeability structure (1996) Geology, 24 (11), pp. 1025-1028;Camargo, G., Mojica, J., Reactivation (long-term evolution) of Silvia-Pijao fault along the ""quebrada La maizena"" western flank of central cordillera, quindio-Colombia (2004) Geol. Colomb., 29, pp. 11-22;Ceballos, D., Análisis geológico y estructural detallado de una zona del proyecto geotérmico en el valle de Las Nereidas, macizo volcánico Nevado del Ruiz, para contribuir en el proceso de exploración geotérmica, CHEC (2017), p. 70. , Universidad de Caldas Manizales;CHEC - Central Hidroeléctrica de Caldas, Instituto Colombiano de Energía Eléctrica, Consultoría Técnica Colombiana Ltda, Geotérmica Italiana, Investigación Geotérmica Macizo Volcánico del Ruíz. Fase II, Etapa A (Vol. II, III). Bogotá (1983), p. 194;Cherubini, Y., Cacace, M., Blocher, G., Scheck-Wenderoth, M., Impact of single inclined faults on the fluid flow and heat transport: results from 3-D finite element simulations (2013) Environ. Earth Sci., 70, pp. 3603-3618;Cherubini, Y., Cacace, M., Scheck-Wenderoth, M., Noack, V., Influence of major fault zones on 3-D coupled fluid and heat transport for the Brandenburg region (NE German Basin) (2014) Geoth. Energy Sci., 2, pp. 1-20;Colombani, J., Lamagat, J.-P., Thiebaux, J., Mesure de la perméabilité des sols en place: un nouvel appareil pour la méthode Muntz une extension de la méthode Porchet aux sols hétérogènes (1972) Cah. O.R.S.T.O.M., sér. Hydrol., 9 (3), p. 31;Corbel, S., Schilling, O., Horowitz, F., Reid, L., Sheldon, H., Timms, N., Wilkes, P., Identification and geothermal influence of faults in the perth metropolitan area, Australia (2012) Workshop on Geothermal Reservoir Engineering, p. 8. , Stanford University, Stanford Geothermal Program Stanford;CORPOCALDAS, Estudio sobre el estado actual de los páramos del Departamento de Caldas: Línea Base. Conservación Internacional Colombia (2005), p. 299;El Espectador, Volcán Nevado del Ruíz es el más vigilado del mundo (2014), https://www.elespectador.com/noticias/nacional/volcan-nevado-del-ruiz-el-mas-vigilado-delmundo-articulo-527469;Ferrill, D., Sims, D., Waiting, D., Morris, A., Franklin, N., Schultz, A., Structural framework of the Edwards Aquifer recharge zone in south-central Texas (2004) GSA Bulletin, 116 (3-4), pp. 406-418;Forero, J.A., Caracterización de las alteraciones hidrotermales en el flanco Noroccidental del Volcán Nevado del Ruiz, Colombia (2012), p. 121. , MSc thesis, Universidad Nacional de Colombia Bogotá;Geuzaine, C., Remacle, J.-F., A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities (2009) Int. J. Numer. Meth. Eng., 79 (11), pp. 1309-1331;Gibson, R., Physical character and fluid-flow properties of sandstone derived fault zones (1998) Geological Society, London, Special Publications, 127, pp. 83-97. , https://doi.org/10.1144/GSL.SP.1998.127.01.07;González, H., Geología de las planchas 206 Manizales y 225 Nevado del Ruíz. Memoria explicativa (2001), p. 93. , Instituto de investigación e información geocientífica, minero-ambiental y nuclear, INGEOMINAS Bogotá;González, H., Geología de las planchas 167 (Sonson) y 187 (Salamina) (1980) Ingeominas, 23 (1), p. 174;González-García, J., Hauser, J., Annetts, D., Franco, J., Vallejo, E., Regenauer-Lieb, K., Nevado Del Ruiz Volcano (Colombia): a 3D Model Combining Geological and Geophysical Information (2015), p. 11. , World Geothermal Congress Melbourne, Australia;González-García, J., Jessell, M., A 3D geological model for the Ruiz-Tolima Volcanic Massif (Colombia): assessment of geological uncertainty using a stochastic approach based on Bézier curve design (2016) Tectonophysics, 687, pp. 139-157;Gómez, J., Montes, N.E., Nivia, Á., Diederix, H., Compiladores, Plancha 5-09 del Atlas Geológico de Colombia 2015. Escala 1:500 000 (2015), Servicio Geológico Colombiano Bogotá;Hamza, V.M., Silva Dias, F.J.S., Gomes, A.J.L., Delgadilho Terceros, Z.G., Numerical and functional representations of regional heat flow in South America (2005) Phys. Earth Planet. In., 152, pp. 223-256;Hao, Y., Fu, P., Johnson, S.M., Carrigan, C.R., Numerical studies of coupled flow and heat transfer processes in hydraulically fractured geothermal reservoirs (2012) GRC Transactions, 36, pp. 453-458;Holzbecher, E., Wong, L.W., Litz, M.-S., Modelling flow through fractures in porous media (2010) Proceedings of the COMSOL Conference, Paris, p. 7;INGEOMINAS, Mapa de flujos de calor (2000);Jaffre, J., Mnejjab, M., Roberts, J., A discrete fracture model for two-phase flow with matrix-fracture interaction (2011) Procedia Comput. Sci., 4, pp. 967-973;Kalinina, E., Klise, K., McKenna, S., Hadgu, T., Lowry, T., Applications of the fractured continuum model (FCM) to EGS heat extraction problems (2013) Thirty-eighth Workshop on Geothermal Reservoir Engineering, p. 16. , Stanford University Stanford, California;Li, W., Yost, K., Sousa, R., (2013) Heat Transfer between Fluid Flow and Fractured Rocks, 37, pp. 165-171. , Massachusetts Institute of Technology GRC Transaction;Londoño, J., Sudo, Y., Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia) (2002) J. Volcanol. Geoth. Res., 119, pp. 61-87;Lovelessa, S., Pluymaekers, M., Lagroua, D., De Boeverc, E., Doornenbalb, H., Laenena, B., Mapping the geothermal potential of fault zones in the Belgium-Netherlands border region. European Geosciences Union General Assembly (2014) Energy procedia, pp. 351-358;Martínez, L., Valencia, L., Ceballos, J., Narváez, B., Pulgarín, B., Correa, A., Pardo, N., Geología y Estratigrafía del Complejo Volcánico Nevado del Ruiz (2014), p. 853. , Bogotá-Popayán-Manizales: Servicio Geológico Colombiano;Mejía, E., Velandia, F., Zuluaga, C., López, J., Cramer, T., Análisis estructural al noreste del Volcán Nevado del Ruíz, Colombia - aporte a la exploración geotérmica (2012) Bol. Geol., 34 (1), pp. 1-15;Monsalve, M.L., Rodriguez, G.I., Mendez, R.A., Bernal, N.F., Geology of the well Nereidas 1, Nevado del Ruiz volcano (1998) Colombia Geothermal Resources Council, 22, pp. 1-6;Mosquera, D., Marín, P., Vesga, C., González, H., Geología de la Plancha 225. Escala 1:100 000 (1998), Nevado del Ruíz;Mosquera, D., Marín, P., Vesga, C., González, H., Maya, M., Geología de la Plancha 206. Escala 1:100 000 (1998), Manizales;Nabelek, P.I., Hofmeister, A.M., Whittington, A.G., The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles (2012) Earth Planet Sci. Lett., 317, pp. 157-164;Oosterbaan, R.J., Nijland, H.J., Determining the saturated hydraulic conductivity (1994) Drainage Principles and Applications, pp. 435-475. , H.P. Ritzema second ed. ILRI Publication 16 Wageningen, The Netherlands, ILRI;Pérez, P., Sánchez, P., Arancibia, G., Cembrano, J., Veloso, E., Lohmar, S., Stimac, J., Rubilar, J., Sampling and detailed structural mapping of veins, fault-veins and faults from Tolhuaca Geothermal System, southern Chile (2012) XIII Congreso Geológico Chileno, pp. 495-497. , Universidad Catolica del Norte Antofagasta, Chile;Puga-Lagos, P., Estudio experimental del Coeficiente de Permeabilidad en Arenas (2012), p. 189. , Trabajo de Grado, Universidad Católica de la Santísima Concepción, Facultad de Ingeniería, Departamento de Ingeniería Civil;Riahi, A., Furtney, J., Damjanac, B., (2014) Evaluation of Optimum Well Positioning in Enhanced Geothermal Reservoirs Using Numerical Modeling, 38, pp. 325-330. , Itasca Consulting Group, Inc Minneapolis, Minnesota U.S.A. Geothermal Resources Council;Rojas, O.E., Contribución al modelo geotérmico asociado al sistema volcánico Nevado del Ruiz-Colombia, por medio del análisis de la relación entre la susceptibilidad magnética, conductividad eléctrica y térmica del sistema (2012), p. 183. , MSc thesis Universidad Nacional de Colombia Bogotá;Sanchez-Alfaro, P., Sielfeld, G., VanCampen, B., Dobson, P., Fuentes, V., Reed, A., Palma-Behnke, R., Morata, D., Geothermal barriers, policies and economics in Chile - lessons for the Andes (2015) Renew. Sustain. Energy Rev., 51, pp. 1390-1401;Spence, W., Sipkin, S., Choy, G., Colorado (1989), 21, p. 64. , U.S. Geological Survey. Earthquakes and Volcanoes USA;Stix, J., Layne, G., Williams, S., Mechanisms of degassing at Nevado del Ruiz volcano, Colombia (2003) J. Geol. Soc., 160, pp. 507-521;Thouret, J.C., Les Andes Centrales de Colombie et leurs bordures;morphogénèse plio-quaternaire et dynamique actuelle et récente d'une cordillère volcanique englacée (1988), p. 628. , Univ. J. Fourier Grenoble, Thèse d'état;Thouret, J.C., Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia (1990) J. Volcanol. Geoth. Res., 41 (1), pp. 177-201. , https://doi.org/10.1016/0377-0273 (90)90088-W;Toro, R., Osorio, J., (2005) Determinación de los tensores de esfuerzos actuales para el segmento norte de los andes calculados a partir de mecanismos focales de sismos mayores, 27, pp. 1-12. , (44);Trenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H.P., Wide plate margin deformation, southern Central America and Northwestern South America, CASA GPS observations (2002) J. S. Am. Earth Sci., 15 (2), pp. 157-171. , https://doi.org/10.1016/S0895-9811 (02)00018-4;Van der Molen, W., Martínez, J., Ochs, W., Guidelines and Computer Programs for the Planning and Design of Land Drainage Systems (2007), p. 233. , FAO;Vélez, M.I., Blessent, D., López, I.J., Raymond, J., Parra, E., Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and risk analysis correction (2018) J. S. Am. Earth Sci., 81, pp. 153-164;Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., Validity of cubic law for fluid flow in a deformable rock fracture (1980) Water Resour. Res., 16, pp. 1016-1024;Whittington, A.G., Hofmeister, A.M., Nabelek, P.I., Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism (2009) Nature Journal, 458, pp. 319-321"spa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem