REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advances in optimal control of differential systems with the state suprema

Thumbnail
Compartir este ítem
Fecha
2018
Autor
Verriest E.I.
Azhmyakov V.

Citación

       
TY - GEN T1 - Advances in optimal control of differential systems with the state suprema AU - Verriest E.I. AU - Azhmyakov V. Y1 - 2018 UR - http://hdl.handle.net/11407/4886 PB - Institute of Electrical and Electronics Engineers Inc. AB - This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely, in electrical engineering and in biology. The corresponding dynamic models lead to Functional Differential Equations (FDEs) in the presence of state-dependent delays. We study some particular (but important) cases of optimal control processes governed by systems with sup-operator in the right hand sides of the differential equations and obtain constructive characterizations of optimal solutions. The constrained OCPs we examine are formulated assuming the (linear) feedback-type control law. The case study presented in this article constitutes a formal extension of the concept of positive dynamic systems to differential systems with the state suprema. © 2017 IEEE. ER - @misc{11407_4886, author = {Verriest E.I. and Azhmyakov V.}, title = {Advances in optimal control of differential systems with the state suprema}, year = {2018}, abstract = {This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely, in electrical engineering and in biology. The corresponding dynamic models lead to Functional Differential Equations (FDEs) in the presence of state-dependent delays. We study some particular (but important) cases of optimal control processes governed by systems with sup-operator in the right hand sides of the differential equations and obtain constructive characterizations of optimal solutions. The constrained OCPs we examine are formulated assuming the (linear) feedback-type control law. The case study presented in this article constitutes a formal extension of the concept of positive dynamic systems to differential systems with the state suprema. © 2017 IEEE.}, url = {http://hdl.handle.net/11407/4886} }RT Generic T1 Advances in optimal control of differential systems with the state suprema A1 Verriest E.I. A1 Azhmyakov V. YR 2018 LK http://hdl.handle.net/11407/4886 PB Institute of Electrical and Electronics Engineers Inc. AB This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely, in electrical engineering and in biology. The corresponding dynamic models lead to Functional Differential Equations (FDEs) in the presence of state-dependent delays. We study some particular (but important) cases of optimal control processes governed by systems with sup-operator in the right hand sides of the differential equations and obtain constructive characterizations of optimal solutions. The constrained OCPs we examine are formulated assuming the (linear) feedback-type control law. The case study presented in this article constitutes a formal extension of the concept of positive dynamic systems to differential systems with the state suprema. © 2017 IEEE. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
This paper deals with a further development of analytic techniques for Optimal Control Problems (OCPs) involving differential systems with the state suprema. Differential equations evolving with state suprema (maxima) provide a useful modelling framework for various real-world applications, namely, in electrical engineering and in biology. The corresponding dynamic models lead to Functional Differential Equations (FDEs) in the presence of state-dependent delays. We study some particular (but important) cases of optimal control processes governed by systems with sup-operator in the right hand sides of the differential equations and obtain constructive characterizations of optimal solutions. The constrained OCPs we examine are formulated assuming the (linear) feedback-type control law. The case study presented in this article constitutes a formal extension of the concept of positive dynamic systems to differential systems with the state suprema. © 2017 IEEE.
URI
http://hdl.handle.net/11407/4886
Colecciones
  • Indexados Scopus [2099]

Ítems relacionados

Mostrando ítems relacionados por Título, Autor o Palabra clave.

  • Thumbnail

    Optimization of affine dynamic systems evolving with state suprema: New perspectives in maximum power point tracking control 

    Azhmyakov V.; Vemest E.I.; Trujillo L.A.G.; Valenzuela P.A. (Institute of Electrical and Electronics Engineers Inc.Ciencias BásicasFacultad de Ciencias Básicas, 2018)
    This paper studies optimization of dynamic systems described by affine Functional Differential Equations (FDEs) involving a sup-operator. We deal with a class of FDEs-featured Optimal Control Problems (OCPs) in the presence ...
  • Thumbnail

    Microsolvation of small cations and anions 

    Hadad C.; Florez E.; Acelas N.; Merino G.; Restrepo A. (John Wiley and Sons Inc.Ciencias BásicasFacultad de Ciencias Básicas, 2018)
    Recent advances in the theoretical treatment of microsolvation of small ions, a problem with practical implications in chemistry, physics, and biology, are exposed. In particular, we discuss sound stochastic approaches to ...
  • Thumbnail

    On the minimax robust Kalman Filter: A bounded estimation resources approach 

    Azhmyakov V.; Castano N.; Arango J.P.; Graczyk P.; Murillo F.H.S. (Institute of Electrical and Electronics Engineers Inc.Ciencias BásicasFacultad de Ciencias Básicas, 2018)
    This paper is devoted to a generalization of the non-standard Kalman Filter (KF) introduced in [4]. We deal with some restrictions of the technical resources in the context of a state estimation problem and study a constrained ...
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com