REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical solution of the Vlasov-Maxwell system of equations for cylindrical plasmas

Thumbnail
Share this
Author
Hoyos J.H.
Ramirez S.
Valencia J.A.

Citación

       
TY - GEN T1 - Numerical solution of the Vlasov-Maxwell system of equations for cylindrical plasmas AU - Hoyos J.H. AU - Ramirez S. AU - Valencia J.A. UR - http://hdl.handle.net/11407/5668 PB - Institute of Physics Publishing AB - We solved numerically the Vlasov-Maxwell system of equations for a bounded cylindrical and radial inhomogeneous plasma which is confined by a strong magnetic field directed along the axis cylinder. Through this solution we found numerically the radial structure of the axial electric field corresponding to the high frequency fundamental transverse magnetic mode propagating in the cylindrical wave guide. Our result shows that the intensity of the electric field tends to be higher in those regions where the plasma is denser and also the field presents oscillations with intensities that decrease and vanish at the radial plasma boundary. This behavior could be relevant in the design of efficient modern plasma based particle accelerators that use the axial electric field to achieve this task. © Published under licence by IOP Publishing Ltd. ER - @misc{11407_5668, author = {Hoyos J.H. and Ramirez S. and Valencia J.A.}, title = {Numerical solution of the Vlasov-Maxwell system of equations for cylindrical plasmas}, year = {}, abstract = {We solved numerically the Vlasov-Maxwell system of equations for a bounded cylindrical and radial inhomogeneous plasma which is confined by a strong magnetic field directed along the axis cylinder. Through this solution we found numerically the radial structure of the axial electric field corresponding to the high frequency fundamental transverse magnetic mode propagating in the cylindrical wave guide. Our result shows that the intensity of the electric field tends to be higher in those regions where the plasma is denser and also the field presents oscillations with intensities that decrease and vanish at the radial plasma boundary. This behavior could be relevant in the design of efficient modern plasma based particle accelerators that use the axial electric field to achieve this task. © Published under licence by IOP Publishing Ltd.}, url = {http://hdl.handle.net/11407/5668} }RT Generic T1 Numerical solution of the Vlasov-Maxwell system of equations for cylindrical plasmas A1 Hoyos J.H. A1 Ramirez S. A1 Valencia J.A. LK http://hdl.handle.net/11407/5668 PB Institute of Physics Publishing AB We solved numerically the Vlasov-Maxwell system of equations for a bounded cylindrical and radial inhomogeneous plasma which is confined by a strong magnetic field directed along the axis cylinder. Through this solution we found numerically the radial structure of the axial electric field corresponding to the high frequency fundamental transverse magnetic mode propagating in the cylindrical wave guide. Our result shows that the intensity of the electric field tends to be higher in those regions where the plasma is denser and also the field presents oscillations with intensities that decrease and vanish at the radial plasma boundary. This behavior could be relevant in the design of efficient modern plasma based particle accelerators that use the axial electric field to achieve this task. © Published under licence by IOP Publishing Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
We solved numerically the Vlasov-Maxwell system of equations for a bounded cylindrical and radial inhomogeneous plasma which is confined by a strong magnetic field directed along the axis cylinder. Through this solution we found numerically the radial structure of the axial electric field corresponding to the high frequency fundamental transverse magnetic mode propagating in the cylindrical wave guide. Our result shows that the intensity of the electric field tends to be higher in those regions where the plasma is denser and also the field presents oscillations with intensities that decrease and vanish at the radial plasma boundary. This behavior could be relevant in the design of efficient modern plasma based particle accelerators that use the axial electric field to achieve this task. © Published under licence by IOP Publishing Ltd.
URI
http://hdl.handle.net/11407/5668
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com