Show simple item record

dc.creatorJonathan A.
dc.creatorCarlos P.
dc.creatorCarlos V.-C.
dc.creatorCarlos P.
dc.date2019
dc.date.accessioned2020-04-29T14:53:40Z
dc.date.available2020-04-29T14:53:40Z
dc.identifier.issn1225383
dc.identifier.urihttp://hdl.handle.net/11407/5690
dc.descriptionThe propagation of seismic waves is affected by the type of transmission media. Therefore, it is necessary to solve a differential equation system in partial derivatives allowing for identification of waves propagating into an elastic media. This paper summarizes a research using a partial differential equation system representing the wave equation using the finite differences method to obtain the elastic media response, using an staggered grid. To prevent reflections in the computational regions, absorbent boundaries were used with the PML method. The implementation of the numerical scheme was made on two computational architectures (CPU and GPU) that share the same type of memory distribution. Finally, different code versions were created to take advantage of the architecture in the GPU memory, performing a detailed analysis of variables such as usage of bandwidth of the GPU internal memory, added to a version that is not limited by the internal memory in the graphic processing unit, but rather by the memory of the whole computational system. © 2019 Ecopetrol S.A.. All rights reserved.
dc.language.isoeng
dc.publisherEcopetrol S.A.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070404091&doi=10.29047%2f01225383.159&partnerID=40&md5=42a3d35af9e43f10678c11d8e8e6b812
dc.sourceCTyF - Ciencia, Tecnologia y Futuro
dc.subjectAsynchronous copies and executions
dc.subjectElastic media
dc.subjectGPU constant memory
dc.subjectGPU shared memory
dc.subjectModelling
dc.subjectPML
dc.subjectGraphics processing unit
dc.subjectModels
dc.subjectShear waves
dc.subjectWave propagation
dc.subjectAsynchronous copies and executions
dc.subjectComputational architecture
dc.subjectConstant memory
dc.subjectDifferential equation systems
dc.subjectElastic media
dc.subjectFinite differences methods
dc.subjectHigh performance computation
dc.subjectShared memory
dc.subjectMemory architecture
dc.titleSolution of A P and S wave propagation model using high performance computation
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.29047/01225383.159
dc.relation.citationvolume9
dc.relation.citationissue1
dc.relation.citationstartpage119
dc.relation.citationendpage130
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationJonathan, A., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, P., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, V.-C., Universidad de Medellín, Carrera 87, Medellín, 30-65, Colombia; Carlos, P., Universidad de Pamplona, km 1 vía a Bucaramanga, Pamplona, Colombia
dc.relation.referencesKomatitsch, D., Erlebacher, G., Goddeke, D., Michea, D., High-order finite-element seismic wave propagation modeling with MPI on a large CPU cluster (2010) Journal of Computational Physics, (229), pp. 7692-7714
dc.relation.referencesWeiss, R., Shragge, J., Solving 3D anisotropic elastic wave equations on paralell GPU devices (2013) Geophysics, 78, pp. 1-9
dc.relation.referencesDas, S., Chen, X., Hobson, M., Fast GPU-based seismogram simulation from microseismic events in marine environments using heterogeneous velocity models (2017) IEEE Transactions on Computational Imaging, 3 (2), pp. 316-329
dc.relation.referencesVirieux, J., A p-sv wave propagation in heterogeneus media: Velocity-stress finite difference method (1986) Geophysics, 51, pp. 899-904
dc.relation.referencesFornberg, B., Generation of finite difference formulas on arbitrarily spaced grids (1988) Mathematics of Computation., 51, pp. 699-706
dc.relation.referencesBamberger, A., Chavent, G., Lailly, P., (2006) Étude de Schémas Numériques de l'Élastodynamique Linéaire., , https://hal.inria.fr/inria-00076520/document, Technical report, INRIA
dc.relation.referencesBerenger, A perfectly matched layer for the absorption of electromagnetic waves (1994) Journal of Computational Geophysics., 114, pp. 185-200
dc.relation.referencesZeng, Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media (2001) Geophysics, 66, pp. 1258-1266
dc.relation.referencesMahrer, An empirical study of instability and improvement of absorbing boundary conditions for elastic wave equation (1986) Geophysics, 51, pp. 1499-1507
dc.relation.referencesStacey, Improved transparent boundary formulations for the elastic wave equation (1988) Bulletin of Seismological Society of America., 78, pp. 2080-2097
dc.relation.references(2017) CUDA NVIDIA Visual Profiler., , https://developer.nvidia.com/nvidia-visual-profiler
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record