Mostrar el registro sencillo del ítem

dc.creatorRodriguez C.
dc.creatorVélez E.
dc.creatorRestrepo J.
dc.creatorQuintero J.H.
dc.creatorAcuña R.
dc.date2019
dc.date.accessioned2020-04-29T14:53:42Z
dc.date.available2020-04-29T14:53:42Z
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/11407/5700
dc.descriptionThe carbon nanotubes (CNTs) dispersion has gained interest in recent years due to its multiple applications in fields such as electronics, concrete, optics, environmental, automotive, marine and aeronautics coatings. In this sense it is necessary to develop stable dispersions of CNTs. On a laboratory scale the method of preparation of the CNTs is usually done using sonication, but this method is not appropriate to obtain CNTs dispersions on a larger scale. This work studies Multiwalled Carbon Nanotubes (MWCNTs) in aqueous medium comparing an industrial laboratory dispersion method vs traditional sonication. A factorial experimental design was performed, considering as variables: dispersion method, type of surfactant and use of a rheological modifier. The samples were prepared according to the full factorial DoE and properties such as electrical conductivity and pH were studied. Stability measurements were carried out over time and charge stability studies were performed using zeta potential measurements. The results shown the best combination of variables for the electrical conductivity was: dispersion method, sonication; dispersant, TX-100; rheological modifier, present. Although the results show that an improvement in CNTs dispersion is not achieved with the grinding and the use of industrial additives, the additive Disperbyk 2012 presented the highest value of electrical conductivity as a lonely compound, but the final electrical conductivity obtained when using it was not so high, it indicates that this additive must have specific conditions of activation, which implies that a further experimental work is required in order to get a suitable working window that allows a combination of variables with greater industrial application. © Published under licence by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics Publishing
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85071706237&doi=10.1088%2f1742-6596%2f1247%2f1%2f012011&partnerID=40&md5=586478472870eabf998ddb01e624d6ad
dc.sourceJournal of Physics: Conference Series
dc.subjectAdditives
dc.subjectDispersions
dc.subjectElectric conductivity
dc.subjectEngineering research
dc.subjectIndustrial laboratories
dc.subjectMarine applications
dc.subjectNanotubes
dc.subjectSonication
dc.subjectYarn
dc.subjectElectrical conductivity
dc.subjectFactorial experimental design
dc.subjectIndustrial additives
dc.subjectMultiple applications
dc.subjectMultiwalled carbon nanotube (MWCNTs)
dc.subjectRheological modifiers
dc.subjectStability measurements
dc.subjectZeta potential measurements
dc.subjectMultiwalled carbon nanotubes (MWCN)
dc.titleTesting industrial laboratory dispersion method of Multi-Walled Carbon Nanotubes (MWCNTs) in aqueous medium
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1088/1742-6596/1247/1/012011
dc.relation.citationvolume1247
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationRodriguez, C., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Vélez, E., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Restrepo, J., Facultad de Ciencias Básicas, Universidad de Medellin, Medellin, Colombia; Quintero, J.H., Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga, Colombia; Acuña, R., Universidad Nacional de Colombia, Medellin, Colombia
dc.relation.referencesDrexler, K.E., (1992) Nanosystems: Molecular Machinery, Manufacturing and Computation, , (New York: John Wiley amp
dc.relation.referencesSons)
dc.relation.referencesWang, X., Li, Q., Xie, J., Jin, Z., Wang, J., Li, Y., Jiang, K., Fan, S., (2009) Nano Letters, 9 (9), p. 3137
dc.relation.referencesMendoza Reales, O.A., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Delgado, C.A., Quintero, J.H., Toledo Filho, R.D., (2018) Cement and Concrete Research, 107, pp. 101-109
dc.relation.referencesMendoza Reales, O.A., Ocampo, C., Arias Jaramillo, Y.P., Ochoa Botero, J.C., Quintero, J.H., Silva, E.C.C.M., Toledo Filho, R.D., (2018) Hindawi Advances in Civil Engineering
dc.relation.referencesRodríguez, B., Quintero, J.H., Arias, Y.P., Mendoza-Reales, O.A., Ochoa-Botero, J.C., Toledo-Filho, R.D., (2017) IOP Conf. Series: Journal of Physics: Conf. Series, 935
dc.relation.referencesAlsharefa, J., Tahaa, M., Khana, T., (2017) Journal Teknologi, 79, pp. 69-81
dc.relation.referencesMittal, G., Dhand, V., Rhee, K.Y., Park, S.-J., Lee, W.R., (2015) J. Ind. Eng. Chem., 21, pp. 11-25
dc.relation.referencesBachtold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294 (5545), pp. 1317-1320
dc.relation.referencesSchadler, L.S., Giannaris, S.C., Ajayan, P.M., (1999) Appl. Phys. Lett., 73 (26), pp. 3842-3844
dc.relation.referencesColeman, J.N., Khan, U., Blau, W.J., Gunko, Y.K., (2006) Carbon, 44 (9), pp. 1624-1652
dc.relation.referencesLi, G.Y., Wang, P.M., Zhao, X., (2005) Carbon, 43 (6), pp. 1239-1245
dc.relation.referencesHuhtala, M., Kuronen, A., Kaski, K., (2002) Computer Physics Communications, 146 (1), pp. 30-37
dc.relation.referencesJiang, L., Gao, L., Sun, J., (2003) Jour. Coll. Interf. Sci., 260 (1), pp. 89-94
dc.relation.referencesYu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45 (3), pp. 618-623
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem