Show simple item record

dc.creatorVilla K.
dc.creatorEchavarría C.
dc.creatorBlessent D.
dc.date2019
dc.date.accessioned2020-04-29T14:53:45Z
dc.date.available2020-04-29T14:53:45Z
dc.identifier.issn127353
dc.identifier.urihttp://hdl.handle.net/11407/5716
dc.descriptionSolid wood gives the shape to walls, while panels are the coating and they are nailed or screwed to the wood sections. In the cavities between the wood elements and the panels, a thermal and acoustic insulator must be added. Unfortunately, almost all of the currently used insulators (mineral wool, expanded polystyrene, polyurethane) are not biodegradable and require the use of vapor barriers (polyethylene sheets, aluminum foils, etc.) that deteriorate rapidly and that are relatively environmentally unfriendly. In this article, the use of coconut fiber instead of conventional insulators is suggested. The acoustic absorption and thermal conductivity coefficients of composite sections taken from wood walls with coconut fiber are estimated. In this way, good thermo-acoustic conditions inside the wood building are achieved using an ecological insulating material. © The author; licensee Universidad Nacional de Colombia.
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081216304&doi=10.15446%2fdyna.v86n210.73685&partnerID=40&md5=5414a81b8aedfdbb412fd1763dba39a7
dc.sourceDYNA (Colombia)
dc.subjectAcoustic absorption
dc.subjectCoconut fiber
dc.subjectThermal conductivity
dc.subjectWood
dc.titleWood walls insulated with coconut fiber [Muro de madera aislado con fibra de coco]
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.identifier.doi10.15446/dyna.v86n210.73685
dc.relation.citationvolume86
dc.relation.citationissue210
dc.relation.citationstartpage333
dc.relation.citationendpage337
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationVilla, K., Universidad Nacional de Colombia, Medellín, Colombia; Echavarría, C., Universidad Nacional de Colombia, Medellín, Colombia; Blessent, D., Universidad de Medellín, Medellín, Colombia
dc.relation.referencesStandard methods of testing on small clear specimens of timber (1994) ASTM Annual Book of Standards, p. 2006. , West Conshohocken, Pa
dc.relation.referencesStandard test methods for specific gravity of wood and wood-based materials (2002) ASTM Annual Book of Standards, p. 2006. , West Conshohocken, Pa
dc.relation.references(2012) Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System, p. 2012. , ASTM Annual Book of Standards, West Conshohocken, Pa
dc.relation.references(2013) Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by means of the Guarded-Hot-Plate Apparatus, p. 2013. , ASTM Annual Book of Standards, West Conshohocken, Pa
dc.relation.references(2015) Standard Test Method for Steady-State Thermal Transmission Properties by means of the Heat Flow Meter Apparatus. ASTM Annual Book of Standards, , West Conshohocken, Pa
dc.relation.referencesAlavez, R., Chiñas, F., Morales, V.J., Ortiz, M., Thermal conductivity of coconut fibre filled ferrocement sandwich panels (2012) Construction and Building Materials, 37, pp. 425-431
dc.relation.referencesAsasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., Cheul-Shin, U., Development of coconut coir-based lightweight cement board (2007) Construction and Building Materials, 21 (2), pp. 277-288
dc.relation.referencesAyub, M., Nor, M.J.M., Fouladi, M.H., Zulkifli, R., Amin, N., A practical acoustical absorption analysis of coir fiber based on rigid frame modeling (2012) Acoustical Physics, 58 (2), pp. 246-255
dc.relation.referencesBiot, M.A., Theory of propagation of elastic waves in a fluid saturated porous solid (1956) The Journal of the Acoustical Society of America, 28 (2), pp. 168-178
dc.relation.referencesConde, S., (2010) Estudio De La Fibra De Coco Con Resina poliéster Para La Manufactura De Palas De Aerogeneradores De pequeña Potencia, , Universidad del Istmo Campus Tehuantepec, Santo Domingo Tehuantepec, Oaxaca
dc.relation.referencesCourgey, S., (2010) Maisons Bois Chanvre Et Paille Sur La Commune De Montholier-Une expérimentation matériaux Renouvelables. Collection Recherche développement métier. Fédération française Du bâtiment, , Paris, SEBTP
dc.relation.referencesDelany, M.E., Bazley, E.N., Acoustical properties of fibrous absorbent materials (1970) Applied Acoustics, 3 (2), pp. 105-116
dc.relation.referencesDunn, I.P., Davern, W.A., Calculation of acoustic impedance of multi-layer absorbers (1986) Applied Acoustics, 19 (5), pp. 321-334
dc.relation.referencesFord, R.D., West, M., The fundamental acoustic parameters of two commonly used absorbent materials (1970) Applied Acoustics, 3 (2), pp. 89-103
dc.relation.referencesFrémond, Y., Ziller, R., de Nucé-De Lamothe, M., (1968) The Coconut Palm, , International Potash Institute, Berne, Switzerland
dc.relation.referencesFouladi, M.H., Ghassem, M., Ayub, M., Mohd-Nor, M.J., Implementation of coir fiber as acoustic absorber material (2011) Noise & Vibration Worldwide, 42 (9), pp. 11-16
dc.relation.referencesHens, H., (2016) Applied Building Physics-Ambient Conditions, Building Performance and Material Properties, , Wiley Ernst & Sohn. Darmstadt, Germany
dc.relation.references(1998) Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method, , 10534-2:1998
dc.relation.referencesKhedari, J., Watsanasathaporn, P., Hirunlabh, J., Development of fibre-based soil-cement block with low thermal conductivity (2005) Cement and Concrete Composites, 27 (1), pp. 111-116
dc.relation.referencesMohanty, A.K., Misra, M., Drzal, L.T., (2005) Natural Fibers, Biopolymers, and Biocomposites, , CRC Press
dc.relation.referencesQuintero, S.L., González, L.O., Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto (2006) Ingeniería Y Desarrollo, 20, pp. 134-150. , Julio-Diciembre
dc.relation.referencesShiney, A., Premlet, B., Acoustic properties of composite coir mats (2014) IOSR Journal of Applied Physics, 6 (3), pp. 18-23
dc.relation.referencesTudu, P., (2009) Processing and Characterization of Natural Fiber Reinforced Polymer Composites. Department of Mechanical Engineering, , National Institute of Technology, Rourkela-769008, Rourkela, India
dc.relation.references(1996) Structures En Bois Aux états Limites: Introduction à L'eurocode 5-Matériaux Et Bases De Calcul-Step 1, , Eyrolles, Paris, France
dc.relation.referencesVorländer, M., (2008) Auralization-Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, , Springer, Berlin, Germany
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record