Mostrar el registro sencillo del ítem

dc.creatorPalacio L.C.
dc.creatorDurango G.
dc.creatorUgarte J.P.
dc.creatorSaiz J.
dc.creatorTobon C.
dc.date2018
dc.date.accessioned2020-04-29T14:53:47Z
dc.date.available2020-04-29T14:53:47Z
dc.identifier.isbn9781728109589
dc.identifier.issn23258861
dc.identifier.urihttp://hdl.handle.net/11407/5725
dc.descriptionExposure to air pollutants agents, like sulfur dioxide (SO2), has significant effects on the cardiovascular system. Studies have shown that SO2 blocks ICaL and increases the INa, IK1 and Ito currents, which implies action potential duration (APD) decrease, favoring the initiation of atrial arrhythmias. This study aims to assess the effects of the SO2 at different concentrations on human atrial action potential, using computational simulation. For this, based on experimental data, we developed concentration-dependent equations to simulate the SO2 effects on the currents. They were incorporated in the Courtemanche model of human atrial cell and in a 2D model of atrial tissue. S1-S2 cross-field protocol was applied to initiate a rotor. SO2 concentrations from 0 to 100 ? M were implemented. Our results are in agreement with results from non-human in vitro and in vivo studies. The SO2 causes APD shortening and loss of plateau phase in a fraction that increases as the concentration increases. In the 2D model, a rotor can be generated from 50 ? M of SO2 concentration, showing a pro-arrhythmic effect. © 2018 Creative Commons Attribution.
dc.language.isoeng
dc.publisherIEEE Computer Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068780911&doi=10.22489%2fCinC.2018.058&partnerID=40&md5=a24aed83d6c5adfe69a3775ed88dff4d
dc.sourceComputing in Cardiology
dc.subjectCardiology
dc.subjectCardiovascular system
dc.subjectSodium compounds
dc.subjectSulfur dioxide
dc.subjectAction potential durations
dc.subjectAction potentials
dc.subjectAir pollutants
dc.subjectAtrial arrhythmia
dc.subjectAtrial cells
dc.subjectAtrial tissues
dc.subjectComputational simulation
dc.subjectConcentration-dependent
dc.subjectCalcium compounds
dc.titleSulfur Dioxide Effects on Human Atrial Action Potential: In Silico Study
dc.typeConference Papereng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.22489/CinC.2018.058
dc.relation.citationvolume2018-September
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationPalacio, L.C., MATBIOM, Universidad de Medellín, Bloque 5, Oficina 111. Carrera 87 N° 30 - 65, Medellín, Colombia; Durango, G., MATBIOM, Universidad de Medellín, Bloque 5, Oficina 111. Carrera 87 N° 30 - 65, Medellín, Colombia; Ugarte, J.P., Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura, Medellín, Colombia; Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain; Tobon, C., MATBIOM, Universidad de Medellín, Bloque 5, Oficina 111. Carrera 87 N° 30 - 65, Medellín, Colombia
dc.relation.references(2014) The Cost of Air Pollution: Health Impacts of Road Transport, , OECD Paris: OECD Publishing
dc.relation.referencesZhang, Q., Tian, J., Bai, Y., Effects of sulfur dioxide and its derivatives on the functions of rat hearts and their mechanisms (2013) Procedia Environ. Sci, 18, pp. 43-50
dc.relation.references(2015), https://www3.epa.gov/airquality/, U.S. Environmental Protection Agency. Air quality planning & standards, [Accessed: 01-May-2017]
dc.relation.referencesNie, A., Meng, Z., Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives (2006) Food Chem. Toxicol, 44 (3), pp. 355-363
dc.relation.referencesZhang, R.Y., Du, J.B., Sun, Y., Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes (2011) Clin. Exp. Pharmacol. Physiol, 38 (7), pp. 416-422
dc.relation.referencesNie, A., Meng, Z., Study of the interaction of sulfur dioxide derivative with cardiac sodium channel (2005) Biochim. Biophys. Acta, 1718 (1-2), pp. 67-73
dc.relation.referencesNie, A., Meng, Z., Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes (2005) Arch. Biochem. Biophys, 442 (2), pp. 187-195
dc.relation.referencesNattel, S., Xiong, F., Aguilar, M., Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms (2017) Nature Reviews Cardiology, 14 (9), pp. 509-520
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol, 275, pp. H301-H321
dc.relation.referencesUgarte, J., Tobón, C., Orozco-Duque, A., Generation of fibrillatory dynamics in cardiac tissue: Fractional diffusion as arrhythmogenic mechanism modelling tool (2017) Appl. Math. Sci, 11 (13), pp. 637-650
dc.relation.referencesBray, M.A., Lin, S.F., Aliev, R.R., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue (2001) J. Cardiovasc. Electrophysiol, 12 (6), pp. 716-722
dc.relation.referencesMiller, K.A., Siscovick, D.S., Sheppard, L., Long-term exposure to air pollution and incidence (2007) N. Engl. J. Med, 356 (5), pp. 447-458
dc.relation.referencesLink, M.S., Luttmann-Gibson, H., Schwartz, J., Acute exposure to air pollution triggers atrial fibrillation (2013) J. Am. Coll. Cardiol, 62 (9), pp. 816-825
dc.relation.referencesPandit, S.V., Berenfeld, O., Anumonwo, J.M.B., Ionic determinants of functional reentry in a 2-d model of human atrial cells during simulated chronic atrial fibrillation (2005) Biophys. J, 88 (6), pp. 3806-3821
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem