REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A brief discussion of the magnetocaloric effect in thin films of manganite doped with chromium

Thumbnail
Share this
Author
Campillo G.
Figueroa A.I.
Arnache O.
Osorio J.
Marin Ramirez J.M.
Fallarino L.

Citación

       
TY - GEN T1 - A brief discussion of the magnetocaloric effect in thin films of manganite doped with chromium AU - Campillo G. AU - Figueroa A.I. AU - Arnache O. AU - Osorio J. AU - Marin Ramirez J.M. AU - Fallarino L. UR - http://hdl.handle.net/11407/5754 PB - Institute of Physics Publishing AB - In this work we report on the magnetocaloric effect of La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3Mn0.94Cr0.06O3 (LCMCrO) manganite thin films grown by DC magnetron sputtering on LaAlO3 (100) substrates. X-ray diffraction shows that both doped and undoped films crystallize in the orthorhombic structure. Magnetic measurements show a decrease in both the Curie temperature, TC , and the saturation magnetization, MS , for the LCMCrO sample. The change in the magnetic entropy (?Sm ) was extracted from hysteresis loops at different temperatures around the ferromagnetic to paramagnetic transition, displaying a maximum of entropy change (?Sm ) max near TC in both films. Moreover, a shift in (?Sm ) max toward temperatures above TC with increasing magnetic field and a broadening of the entropy change curve were observed. Results of refrigeration cooling power show a lower efficiency for LCMCrO. In order to obtain a local insight into the magnetic interactions of these films, measurements of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) were performed. XMCD suggests that an antiferromagnetic coupling between Mn4+ - Mn3+ is favored with Cr3+ incorporation, which reduces the Mn L 2,3 XMCD signal and results in a decrease of MS and (?Sm ) max in LCMCrO films. © Published under licence by IOP Publishing Ltd. ER - @misc{11407_5754, author = {Campillo G. and Figueroa A.I. and Arnache O. and Osorio J. and Marin Ramirez J.M. and Fallarino L.}, title = {A brief discussion of the magnetocaloric effect in thin films of manganite doped with chromium}, year = {}, abstract = {In this work we report on the magnetocaloric effect of La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3Mn0.94Cr0.06O3 (LCMCrO) manganite thin films grown by DC magnetron sputtering on LaAlO3 (100) substrates. X-ray diffraction shows that both doped and undoped films crystallize in the orthorhombic structure. Magnetic measurements show a decrease in both the Curie temperature, TC , and the saturation magnetization, MS , for the LCMCrO sample. The change in the magnetic entropy (?Sm ) was extracted from hysteresis loops at different temperatures around the ferromagnetic to paramagnetic transition, displaying a maximum of entropy change (?Sm ) max near TC in both films. Moreover, a shift in (?Sm ) max toward temperatures above TC with increasing magnetic field and a broadening of the entropy change curve were observed. Results of refrigeration cooling power show a lower efficiency for LCMCrO. In order to obtain a local insight into the magnetic interactions of these films, measurements of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) were performed. XMCD suggests that an antiferromagnetic coupling between Mn4+ - Mn3+ is favored with Cr3+ incorporation, which reduces the Mn L 2,3 XMCD signal and results in a decrease of MS and (?Sm ) max in LCMCrO films. © Published under licence by IOP Publishing Ltd.}, url = {http://hdl.handle.net/11407/5754} }RT Generic T1 A brief discussion of the magnetocaloric effect in thin films of manganite doped with chromium A1 Campillo G. A1 Figueroa A.I. A1 Arnache O. A1 Osorio J. A1 Marin Ramirez J.M. A1 Fallarino L. LK http://hdl.handle.net/11407/5754 PB Institute of Physics Publishing AB In this work we report on the magnetocaloric effect of La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3Mn0.94Cr0.06O3 (LCMCrO) manganite thin films grown by DC magnetron sputtering on LaAlO3 (100) substrates. X-ray diffraction shows that both doped and undoped films crystallize in the orthorhombic structure. Magnetic measurements show a decrease in both the Curie temperature, TC , and the saturation magnetization, MS , for the LCMCrO sample. The change in the magnetic entropy (?Sm ) was extracted from hysteresis loops at different temperatures around the ferromagnetic to paramagnetic transition, displaying a maximum of entropy change (?Sm ) max near TC in both films. Moreover, a shift in (?Sm ) max toward temperatures above TC with increasing magnetic field and a broadening of the entropy change curve were observed. Results of refrigeration cooling power show a lower efficiency for LCMCrO. In order to obtain a local insight into the magnetic interactions of these films, measurements of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) were performed. XMCD suggests that an antiferromagnetic coupling between Mn4+ - Mn3+ is favored with Cr3+ incorporation, which reduces the Mn L 2,3 XMCD signal and results in a decrease of MS and (?Sm ) max in LCMCrO films. © Published under licence by IOP Publishing Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In this work we report on the magnetocaloric effect of La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3Mn0.94Cr0.06O3 (LCMCrO) manganite thin films grown by DC magnetron sputtering on LaAlO3 (100) substrates. X-ray diffraction shows that both doped and undoped films crystallize in the orthorhombic structure. Magnetic measurements show a decrease in both the Curie temperature, TC , and the saturation magnetization, MS , for the LCMCrO sample. The change in the magnetic entropy (?Sm ) was extracted from hysteresis loops at different temperatures around the ferromagnetic to paramagnetic transition, displaying a maximum of entropy change (?Sm ) max near TC in both films. Moreover, a shift in (?Sm ) max toward temperatures above TC with increasing magnetic field and a broadening of the entropy change curve were observed. Results of refrigeration cooling power show a lower efficiency for LCMCrO. In order to obtain a local insight into the magnetic interactions of these films, measurements of X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) were performed. XMCD suggests that an antiferromagnetic coupling between Mn4+ - Mn3+ is favored with Cr3+ incorporation, which reduces the Mn L 2,3 XMCD signal and results in a decrease of MS and (?Sm ) max in LCMCrO films. © Published under licence by IOP Publishing Ltd.
URI
http://hdl.handle.net/11407/5754
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com