Mostrar el registro sencillo del ítem

dc.creatorLontsi A.M.
dc.creatorGarcía-Jerez A.
dc.creatorMolina-Villegas J.C.
dc.creatorSánchez-Sesma F.J.
dc.creatorMolkenthin C.
dc.creatorOhrnberger M.
dc.creatorKrüger F.
dc.creatorWang R.
dc.creatorFäh D.
dc.date2019
dc.date.accessioned2020-04-29T14:53:55Z
dc.date.available2020-04-29T14:53:55Z
dc.identifier.issn0956540X
dc.identifier.urihttp://hdl.handle.net/11407/5760
dc.descriptionAdvances in the field of seismic interferometry have provided a basic theoretical interpretation to the full spectrum of the microtremor horizontal-to-vertical spectral ratio [H/V(f)]. The interpretation has been applied to ambient seismic noise data recorded both at the surface and at depth. The new algorithm, based on the diffuse wavefield assumption, has been used in inversion schemes to estimate seismic wave velocity profiles that are useful input information for engineering and exploration seismology both for earthquake hazard estimation and to characterize surficial sediments. However, until now, the developed algorithms are only suitable for on land environments with no offshore consideration. Here, the microtremor H/V(z, f) modelling is extended for applications to marine sedimentary environments for a 1-D layered medium. The layer propagator matrix formulation is used for the computation of the required Green's functions. Therefore, in the presence of a water layer on top, the propagator matrix for the uppermost layer is defined to account for the properties of the water column. As an application example we analyse eight simple canonical layered earth models. Frequencies ranging from 0.2 to 50 Hz are considered as they cover a broad wavelength interval and aid in practice to investigate subsurface structures in the depth range from a few meters to a few hundreds of meters. Results show a marginal variation of 8 per cent at most for the fundamental frequency when a water layer is present. The water layer leads to variations in H/V peak amplitude of up to 50 per cent atop the solid layers. © The Author(s) 2019.
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075640474&doi=10.1093%2fgji%2fggz223&partnerID=40&md5=7ce964f4b24f726f5caec87cc0583a7a
dc.sourceGeophysical Journal International
dc.subjectEarthquake hazards
dc.subjectNumerical modelling
dc.subjectSeismic interferometry
dc.subjectSite effects
dc.subjectTheoretical seismology
dc.subjectWave propagation
dc.subjectComputation theory
dc.subjectHazards
dc.subjectInterferometry
dc.subjectMarine applications
dc.subjectMatrix algebra
dc.subjectNumerical models
dc.subjectOffshore oil well production
dc.subjectSurficial sediments
dc.subjectWave propagation
dc.subjectEarthquake hazard
dc.subjectExploration seismology
dc.subjectFundamental frequencies
dc.subjectHorizontal-to-vertical spectral ratios
dc.subjectSedimentary environment
dc.subjectSeismic interferometries
dc.subjectSite effects
dc.subjectTheoretical seismologies
dc.subjectEarthquakes
dc.subjectalgorithm
dc.subjectGreen function
dc.subjectmarine environment
dc.subjectmicrotremor
dc.subjectnumerical model
dc.subjectoffshore structure
dc.subjectradar interferometry
dc.subjectseismic hazard
dc.subjectsite effect
dc.subjectsurficial sediment
dc.subjecttheoretical study
dc.subjectwave propagation
dc.titleA generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Civil
dc.identifier.doi10.1093/gji/ggz223
dc.relation.citationvolume218
dc.relation.citationissue2
dc.relation.citationstartpage1276
dc.relation.citationendpage1297
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationLontsi, A.M., Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerland; García-Jerez, A., Departamento de Química y Física, Universidad de Almeria, Almeria, 04120, Spain, Instituto Andaluz de Geofísica, Universidad de Granada, Granada, 18071, Spain; Molina-Villegas, J.C., Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia, Departamento de Ingeniería Civil, Facultad de Minas, Universidad Nacional de Colombia - Sede Medellín, Carrera 80 No 65-223, Medellín, Colombia; Sánchez-Sesma, F.J., Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Cd Universitaria, Coyoacán, Cdmx, 04510, Mexico; Molkenthin, C., Institute of Mathematics, University of Potsdam, Potsdam, 14476, Germany; Ohrnberger, M., Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany; Krüger, F., Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany; Wang, R., GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany; Fäh, D., Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerland
dc.relation.referencesAbo-Zena, A., Dispersion function computations for unlimited frequency values (1979) Geophys. J. Int., 58 (1), pp. 91-105
dc.relation.referencesAki, K., Richards, P.G., (2002) Quantitative Seismology, , 2nd edn, University Science Books
dc.relation.referencesBard, P.-Y., Microtremor measurements: A tool for site effect estimation? State-of-The-art paper (1998) Second International Symposium on the Effects of Surface Geology on Seismic Motion, 3, pp. 1251-1279. , eds Irikura, K., Kudo, K., Okada, H., Satasini, T. & Balkema, in
dc.relation.referencesBouchon, M., Aki, K., Discrete wave-number representation of seismic-source wave fields (1977) Bull. Seism. Soc. Am., 67 (2), pp. 259-277
dc.relation.referencesCurtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K., Seismic interferometry-turning noise into signal (2006) Leading Edge, 25 (9), pp. 1082-1092
dc.relation.referencesDjikpesse, H., Recent advances and trends in subsea technologies and seafloor properties characterization (2013) Leading Edge, 32 (10), pp. 1214-1220
dc.relation.referencesDomínguez, J., Abascal, R., On fundamental solutions for the boundary integral equations method in static and dynamic elasticity (1984) Engi. Anal., 1 (3), pp. 128-134
dc.relation.referencesDunkin, J.W., Computation ofmodal solutions in layered, elastic media at high frequencies (1965) Bull. Seism. Soc. Am., 55 (2), pp. 335-358
dc.relation.referencesFäh, D., Kind, F., Giardini, D., Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects (2003) J. Seismol., 7 (4), pp. 449-467
dc.relation.referencesGantmacher, F., (1959) The Theory of Matrices, 1. , Chelsea Publishing Company
dc.relation.referencesGarcía-Jerez, A., Piña-Flores, J., Sánchez-Sesma, F.J., Luzón, F., Perton, M., A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption (2016) Comput. Geosci., 97, pp. 67-78
dc.relation.referencesGarcía-Jerez, A., Seivane, H., Navarro, M., Martínez-Segura, M., Piña-Flores, J., Joint analysis of rayleigh-wave dispersion curves and diffuse-field HVSR for site characterization: The case of El ejido town (SE Spain) (2019) Soil Dyn. Earthq. Eng., 121, pp. 102-120
dc.relation.referencesGilbert, F., Backus, G.E., Propagator matrices in elastic wave and vibration problems (1966) Geophysics, 31 (2), pp. 326-332
dc.relation.referencesGouédard, P., Cross-correlation of random fields: Mathematical approach and applications (2008) Geophys. Prospect, 56 (3), pp. 375-393
dc.relation.referencesHarvey, D.J., Seismogram synthesis using normalmode superposition: The locked mode approximation (1981) Geophys. J. Int., 66 (1), pp. 37-69
dc.relation.referencesHaskell, N.A., The dispersion of surfacewaves onmultilayeredmedia (1953) Bull. Seism. Soc. Am., 43 (1), pp. 17-34
dc.relation.referencesHerrmann, R.B., (2008) Seismic Waves in Layered Media, pp. 1-335. , draft
dc.relation.referencesHobiger, M., Fäh, D., Michel, C., Burjánek, J., Maranò, S., Pilz, M., Imperatori, W., Bergamo, P., Site characterization in the framework of the renewal of the swiss strang motion network (SSMNet) (2016) 5th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, , Taipei, Taiwan, August 15-17, 2016
dc.relation.referencesHuerta-Lopez, C., Pulliam, J., Nakamura, Y., In situ evaluation of shear-wave velocities in seafloor sediments with a broadband oceanbottom seismograph (2003) Bull. Seism. Soc. Am., 93 (1), pp. 139-151
dc.relation.referencesKennett, B.L.N., Kerry, N.J., Seismic waves in a stratified half space (1979) Geophys. J. R. Astr. Soc., 57 (3), pp. 557-583
dc.relation.referencesKnopoff, L., A matrix method for elastic wave problems (1964) Bull. Seism. Soc. Am., 54 (1), pp. 431-438
dc.relation.referencesLachet, C., Bard, P.-Y., Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique (1994) J. Phys. Earth, 42 (5), pp. 377-397
dc.relation.referencesLobkis, O.I., Weaver, R.L., On the emergence of the Green's function in the correlations of a diffuse field (2001) J. Acoust. Soc. Am., 110 (6), pp. 3011-3017
dc.relation.referencesLontsi, A.M., (2016) 1D Shallow Sedimentary Subsurface Imaging Using Ambient Noise and Active Seismic Data, , Doctoral thesis, Universität Potsdam
dc.relation.referencesLontsi, A.M., Sánchez-Sesma, F.J., Molina-Villegas, J.C., Ohrnberger, M., Krüger, F., Full microtremor H/V(z, f) inversion for shallow subsurface characterization (2015) Geophys. J. Int., 202 (1), pp. 298-312
dc.relation.referencesLontsi, A.M., Ohrnberger, M., Krüger, F., Sánchez-Sesma, F.J., Combining surface wave phase velocity dispersion curves and full microtremor horizontal-to-vertical spectral ratio for subsurface sedimentary site characterization (2016) Interpretation, 4 (4)
dc.relation.referencesMüller, G., The reflectivity method: A tutorial (1985) J. Geophys., 58, pp. 153-174
dc.relation.referencesMuyzert, E., Seabed property estimation from ambient-noise recordings: Part 2-scholte-wave spectral-ratio inversion (2007) Geophysics, 72 (4), pp. U47-U53
dc.relation.referencesNakamura, Y., A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface (1989) Q. Rep. RTRI, 30, pp. 25-33
dc.relation.referencesOverduin, P.P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M.N., Ohrnberger, M., Submarine permafrost depth from ambient seismic noise (2015) Geophys. Res. Lett., 42 (18), pp. 7581-7588
dc.relation.referencesPaul, A., Campillo, M., Margerin, L., Larose, E., Derode, A., Empirical synthesis of time-asymmetrical green functions from the correlation of coda waves (2005) J. Geophys. Res., 110 (B8)
dc.relation.referencesPerton, M., Sánchez-Sesma, F.J., Rodríguez-Castellanos, A., Campillo, M., Weaver, R.L., Two perspectives on equipartition in diffuse elastic fields in three dimensions (2009) J. Acoust. Soc. Am., 126 (3), pp. 1125-1130
dc.relation.referencesPiña-Flores, J., Perton, M., García-Jerez, A., Carmona, E., Luzón, F., Molina-Villegas, J.C., Sánchez-Sesma, F.J., The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA) (2017) Geophys. J. Int., 208 (1), pp. 577-588
dc.relation.referencesSánchez-Sesma, F.J., Campillo, M., Retrieval of the Green's function from cross correlation: The canonical elastic problem (2006) Bull. Seism. Soc. Am., 96 (3), pp. 1182-1191
dc.relation.referencesSánchez-Sesma, F.J., Pérez-Ruiz, J.A., Luzón, F., Campillo, M., Rodríguez-Castellanos, A., Diffuse fields in dynamic elasticity (2008) Wave Motion, 45, pp. 641-654
dc.relation.referencesSánchez-Sesma, F.J., A theory for microtremor H/V spectral ratio: Application for a layered medium (2011) Geophys. J. Int., 186 (1), pp. 221-225
dc.relation.referencesSánchez-Sesma, F.J., Victoria-Tobon, E., Carbajal-Romero, M., Rodríguez-Sánchez, J.E., Rodríguez-Castellanos, A., Energy equipartition in theoretical and recovered seismograms (2018) J. Appl. Geophys., 150, pp. 153-159
dc.relation.referencesScherbaum, F., Hinzen, K.-G., Ohrnberger, M., Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations (2003) Geophys. J. Int., 152 (3), pp. 597-612
dc.relation.referencesSens-Schönfelder, C., Wegler, U., Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, Indonesia (2006) Geophys. Res. Lett., 33 (21)
dc.relation.referencesShapiro, N.M., Campillo, M., Emergence of broadband rayleigh waves from correlations of the ambient seismic noise (2004) Geophys. Res. Lett., 31 (7)
dc.relation.referencesSnieder, R., Wapenaar, K., Wegler, U., Unified Green's function retrieval by cross-correlation
dc.relation.referencesconnection with energy principles (2007) Phys. Rev. E, 75, p. 036103
dc.relation.referencesSnieder, R., Sánchez-Sesma, F.J., Wapenaar, K., Field fluctuations, imaging with backscattered waves, a generalized energy theorem, and the optical theorem (2009) SIAM J. Imaging Sci., 2 (2), pp. 763-776
dc.relation.referencesSpica, Z.J., Perton, M., Nakata, N., Liu, X., Beroza, G.C., Site characterization at groningen gas field area through joint surface-borehole H/V analysis (2018) Geophys. J. Int., 212 (1), pp. 412-421
dc.relation.referencesStephen, R.A., The seafloor borehole array seismic system (SEABASS) and VLF ambient noise (1994) Mar. Geophys. Res., 16 (4), pp. 243-286
dc.relation.referencesThomson, W.T., Transmission of elastic waves through a stratified solid medium (1950) J. Appl. Phys., 21 (2), pp. 89-93
dc.relation.referencesTuan, T.T., Vinh, P.C., Ohrnberger, M., Malischewsky, P., Aoudia, A., An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique (2016) Pure Appl. Geophys., 173 (8), pp. 2803-2812
dc.relation.referencesVan Manen, D.-J., Curtis, A., Robertsson, J.O., Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity (2006) Geophysics, 71 (4), pp. SI47-SI60
dc.relation.referencesWang, R., Asimple orthonorma lizationmethod for stable and efficient computation of Green's functions (1999) Bull. Seism. Soc. Am., 89 (3), pp. 733-741
dc.relation.referencesWapenaar, K., Fokkema, J., Green's function representations for seismic interferometry (2006) Geophysics, 71 (4), pp. SI33-SI46
dc.relation.referencesWeaver, R.L., Diffuse elastic waves at a free surface (1985) J. Acoust. Soc. Am., 78, pp. 131-136
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem