Mostrar el registro sencillo del ítem

dc.creatorRodríguez-Magdaleno K.A.
dc.creatorMora-Ramos M.E.
dc.creatorPérez-Álvarez R.
dc.creatorMartínez-Orozco J.C.
dc.date2020
dc.date.accessioned2020-04-29T14:54:05Z
dc.date.available2020-04-29T14:54:05Z
dc.identifier.issn13698001
dc.identifier.urihttp://hdl.handle.net/11407/5802
dc.descriptionIn this paper we theoretically investigate the role of hydrostatic pressure by analyzing its influence on potential barrier's height in GaAs/AlxGa1?xAs core/shell spherical quantum dots. The values of hydrostatic pressure considered here are always below the ??X crossover. In addition, we take into account the barrier shell's size effects and the barrier's aluminum concentration, looking for a description of the features of the intraband optical absorption coefficient in the system. The electronic structure is calculated within the effective mass approximation. From the numerical point of view the hybrid matrix method was implemented to avoid numerical instability issues that appears in the conventional transfer matrix method. The main intersubband optical transition is considered to take place between the 1s and 1p computed electronic states. The results show that the absorption coefficient undergoes first a red-shift and later a more pronounced blue-shift, depending on the AlxGa1?xAs barrier width (wb1). The absorption coefficient experiences a blue-shift as the barrier's aluminum concentration increases, and it is non monotonically red-shifted as the hydrostatic pressure augments, due to the barrier's height pressure dependency. For the chosen system parameters, the absorption coefficient resonant peak lies within the range of 20 to 30 meV, that corresponds to the THz frequency region. Accordingly, this system can be proposed as a building block for photodetectors in the THz electromagnetic spectrum region. © 2019 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077330152&doi=10.1016%2fj.mssp.2019.104906&partnerID=40&md5=578787255333f5f7bed14d0c24068be8
dc.sourceMaterials Science in Semiconductor Processing
dc.subjectAbsorption coefficient
dc.subjectIntraband transitions
dc.subjectSpherical quantum dot
dc.subjectTerahertz
dc.subjectAluminum
dc.subjectBlue shift
dc.subjectElectronic structure
dc.subjectGallium arsenide
dc.subjectHydraulics
dc.subjectHydrostatic pressure
dc.subjectIII-V semiconductors
dc.subjectLight absorption
dc.subjectNanocrystals
dc.subjectNumerical methods
dc.subjectRed Shift
dc.subjectSemiconducting gallium
dc.subjectSemiconductor quantum dots
dc.subjectSpheres
dc.subjectAbsorption co-efficient
dc.subjectEffective mass approximation
dc.subjectElectromagnetic spectra
dc.subjectIntersubband optical transitions
dc.subjectIntraband transitions
dc.subjectOptical absorption coefficients
dc.subjectSpherical quantum dot
dc.subjectTera Hertz
dc.subjectTransfer matrix method
dc.titleEffect of the hydrostatic pressure and shell's Al composition in the intraband absorption coefficient for core/shell spherical GaAs/AlxGa1?xAs quantum dots
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programFacultad de Ciencias Básicas
dc.identifier.doi10.1016/j.mssp.2019.104906
dc.relation.citationvolume108
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationRodríguez-Magdaleno, K.A., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo La Bufa S/N, C.P. 98060, Zac., Zacatecas, Mexico; Mora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Pérez-Álvarez, R., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, CP 62209, Mexico; Martínez-Orozco, J.C., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo La Bufa S/N, C.P. 98060, Zac., Zacatecas, Mexico
dc.relation.referencesBeattie, N.S., See, P., Zoppi, G., Ushasree, P.M., Duchamp, M., Farrer, I., Ritchie, D.A., Tomi?, S., Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells (2017) ACS Photonics, 4, p. 2745
dc.relation.referencesLuque, A., Marti, A., Stanley, C., Understanding intermediate-band solar cells (2012) Nature Photon., 6, p. 146
dc.relation.referencesKim, Y., Cho, I.-W., Ryu, M.-Y., Kim, J.O., Lee, S.J., Ban, K.-Y., Honsberg, C.B., Stranski Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells (2017) Appl. Phys. Lett., 111, p. 073103
dc.relation.referencesDhomkar, S., Ji, H., Roy, B., Deligiannakis, V., Wang, A., Tamargo, M.C., Kuskovsky, I.L., Measurement and control of size and density of type-II ZnTe/ZnSe submonolayer quantum dots grown by migration enhanced epitaxy (2015) J. Cryst. Growth, 422, p. 8
dc.relation.referencesKagan, C.R., Lifshitz, E., Sargent, E.H., Talapin, D.V., Building devices from colloidal quantum dots (2016) Science, 353, p. 6302
dc.relation.referencesTronco-Jurado, U., Saucedo-Flores, E., Ruelas, R., López, R., Alvarez-Ramos, M.E., Ayón, A.A., Synergistic effects of nanotexturization and down shifting CdTe quantum dots in solar cell performance (2017) Microsyst. Technol., 23, p. 3945
dc.relation.referencesLeontiadou, M.A., Tyrrell, E.J., Smith, C.T., Espinobarro-Velazquez, D., Page, R., O'Brien, P., Miloszewski, J., Tomi?, S., Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells (2017) Sol. Energy Mater. Sol. Cells, 159, p. 657
dc.relation.referencesRodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Pernas-Salomón, R., Multi-shell spherical quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels (2017) Physica E, 88, p. 142
dc.relation.referencesZhukova, E.S., Gorshunov, B.P., Yuryev, V.A., Arapkina, L.V., Chizh, K.V., Chapnin, V.A., Kalinushkin, V.P., Mikhailova, G.N., Absorption of terahertz radiation in Ge/Si(001) heterostructures with quantum dots (2010) JETP Lett., 92, p. 793
dc.relation.referencesPresto, J.M.M., Prieto, E.A.P., Omambac, K.M., Afalla, J.P.C., Lumantas, D.A.O., Salvador, A.A., Somintac, A.S., Tani, M., Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy (2015) Opt. Express, 23, p. 14532
dc.relation.referencesStephan, D., Bhattacharyya, J., Huo, Y.H., Schmidt, O.G., Rastelli, A., Helm, M., Schneider, H., Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation (2016) Appl. Phys. Lett., 108, p. 082107
dc.relation.referencesSabaeian, M., Riyahi, M., Truncated pyramidal-shaped InAs/GaAs quantum dots in the presence of a vertical magnetic field: An investigation of THz wave emission and absorption (2017) Physica E, 89, p. 105
dc.relation.referencesLiu, W.H., Qu, Y., Ban, S.L., Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots (2017) Superlattices Microstruct., 102, p. 373
dc.relation.referencesGhazi, H.E., Jorio, A., Zorkani, I., Linear and nonlinear intra-conduction band optical absorption in (In,Ga)N/GaN spherical QD under hydrostatic pressure (2014) Opt. Commun., 331, pp. 73-76
dc.relation.referencesAouami, A.E., Feddi, E., Talbi, A., Dujardin, F., Duque, C.A., Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure (2018) Appl. Phys. A, 124, p. 442
dc.relation.referencesM'zerd, S., Haouari, M.E., Talbi, A., Feddi, E., Mora-Ramos, M.E., Impact of electron-LO-phonon correction and donor impurity localization on the linear and nonlinear optical properties in spherical core/shell semiconductor quantum dots (2018) J. Alloys Compd., 753, p. 68
dc.relation.referencesRodríguez-Magdaleno, K.A., Pérez-Álvarez, R., Martínez-Orozco, J.C., Intra-miniband absorption coefficient in GaAs/AlxGa1?xAs core/shell spherical quantum dot (2018) J. Alloys Compd., 736, p. 211
dc.relation.referencesPavlovi?, V., u njar, M., Petrovi?, K., Stevanovi?, L., Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity (2018) Opt. Mater., 78, p. 191
dc.relation.referencesTalbi, A., Feddi, E., Oukerroum, A., Assaid, E., Dujardin, F., Addou, M., Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field (2015) Superlattices Microstruct., 85, p. 581
dc.relation.referencesFeddi, E., Talbi, A., Mora-Ramos, M.E., Haouari, M.E., Dujardin, F., Duque, C.A., Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot (2017) Physica B., 524, p. 64
dc.relation.referencesImran, A., Jiang, J., Eric, D., Zahid, M.N., Yousaf, M., Shah, Z.H., Optical properties of InAs/GaAs quantum dot superlattice structures (2018) Results. Phys., 9, p. 297
dc.relation.referencesSurrente, A., Felici, M., Gallo, P., Rudra, A., Dwir, B., Kapon, E., Dense arrays of site-controlled quantum dots with tailored emission wavelength: Growth mechanisms and optical properties (2017) Appl. Phys. Lett., 111, p. 221102
dc.relation.referencesWolford, D.J., Kuech, T.F., Bradley, J.A., Gell, M.A., Ninno, D., Jaros, M., Pressure dependence of GaAs/AlxGa1?xAs quantum-well bound states: The determination of valence-band offsets (1986) J. Vac. Sci. Technol. B, 4, p. 1043
dc.relation.referencesLeburton, J.P., Kahen, K., GaAs-AlGaAs superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation (1985) Superlattices Microstruct., 1, p. 49
dc.relation.referencesElabsy, A.M., Band mixing dependence of the lowest energy states in uncoupled quantum wells (1993) Superlattices Microstruct., 14, p. 65
dc.relation.referencesElabsy, A.M., Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures (1993) Phys. Scr., 48, p. 376
dc.relation.referencesElabsy, A.M., Effect of the Gamma-X crossover on the binding energies of confined donors in single GaAs/AlxGa1?xAs quantum-well microstructures (1994) J. Phys.: Condens. Matter., 6, p. 10025
dc.relation.referencesBurnett, J.H., Cheong, H.M., Paul, W., Koteles, E.S., Elman, B., ??X mixing in AlxGa1?xAs coupled double quantum wells under hydrostatic pressure (1993) Phys. Rev. B, 47, p. 1991
dc.relation.referencesBaghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Mora-Ramos, M.E., Duque, C.A., Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1?xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration (2014) J. Lumin., 145, p. 676
dc.relation.referencesBouzaiene, L., Alamri, H., Sfaxi, L., Maaref, H., Simultaneous effects of hydrostatic pressure, temperature and electric field on optical absorption in InAs/GaAs lens shape quantum dot (2016) J. Alloys Compd., 655, p. 172
dc.relation.referencesOrtakaya, S., Kirak, M., Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement (2016) Chin. Phys. B, 25, p. 127302
dc.relation.referencesKarimi, M.J., Rezaei, G., Nazari, M., Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature (2014) J. Lumin., 145, p. 55
dc.relation.referencesBenDaniel, D.J., Duke, C.B., Space-charge effects on electron tunneling (1966) Phys. Rev., 152, p. 683
dc.relation.referencesOspina, D.A., Mora-Ramos, M.E., Duque, C.A., Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well (2017) J. Nanosci. Nanotechno., 17, p. 1247
dc.relation.referencesSamara, G.A., Temperature and pressure dependences of the dielectric constants of semiconductors (1983) Phys. Rev. B, 27, p. 3494
dc.relation.referencesReyes-Gómez, E., Raigoza, N., Oliveira, L.E., Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in GaAs-(Ga,Al)As quantum wells under in-plane magnetic fields (2008) Phys. Rev. B, 77, p. 115308
dc.relation.referencesAbramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1964), ninth Dover printing, tenth GPO printing Dover New York
dc.relation.referencesChuang, S.L., Physics of Optoelectronic Devices (2005), first ed. Wiley
dc.relation.referencesHosseini, M., Tailoring the terahertz absorption in the quantum wells (2016) Optik, 127, p. 4554
dc.relation.referencesWilliams, B.S., Terahertz quantum-cascade lasers (2007) Nat. Photonics, 1, p. 517
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem