REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Green synthesis of magnetic nanoparticles using leaf extracts of Aloe vera and Kalanchoe daigremontiana to remove divalent mercury from natural waters

Thumbnail
Share this
Author
Morales G.
Campillo G.
Vélez E.
Osorio J.
Urquijo J.
Velásquez Á.A.

Citación

       
TY - GEN T1 - Green synthesis of magnetic nanoparticles using leaf extracts of Aloe vera and Kalanchoe daigremontiana to remove divalent mercury from natural waters AU - Morales G. AU - Campillo G. AU - Vélez E. AU - Osorio J. AU - Urquijo J. AU - Velásquez Á.A. UR - http://hdl.handle.net/11407/5809 PB - Institute of Physics Publishing AB - In this study, magnetic nanoparticles of magnetite were prepared by an eco-friendly method using aqueous leaf extracts of Aloe vera and Kalanchoe daigremontiana. These vegetal extracts have suitable characteristics such as high availability, low cost, and serve as good colloidal stabilizers. Synthetized products were characterized by Transmission Electron Microscopy (TEM), Room Temperature Mossbauer Spectroscopy (RT-MS), and their potential use as adsorbents for Hg (II) removal in natural waters was evaluated by Atomic Absorption Spectroscopy (AAS). Size distribution and morphology of the products obtained by TEM show spherical nanoparticles composites, with sizes between 3 and 10 nm for both extracts. Mossbauer spectra are consistent with superparamagnetic particles for both samples. Moreover, particles from both extracts showed mercury removal efficiencies above 75%. © Published under licence by IOP Publishing Ltd. ER - @misc{11407_5809, author = {Morales G. and Campillo G. and Vélez E. and Osorio J. and Urquijo J. and Velásquez Á.A.}, title = {Green synthesis of magnetic nanoparticles using leaf extracts of Aloe vera and Kalanchoe daigremontiana to remove divalent mercury from natural waters}, year = {}, abstract = {In this study, magnetic nanoparticles of magnetite were prepared by an eco-friendly method using aqueous leaf extracts of Aloe vera and Kalanchoe daigremontiana. These vegetal extracts have suitable characteristics such as high availability, low cost, and serve as good colloidal stabilizers. Synthetized products were characterized by Transmission Electron Microscopy (TEM), Room Temperature Mossbauer Spectroscopy (RT-MS), and their potential use as adsorbents for Hg (II) removal in natural waters was evaluated by Atomic Absorption Spectroscopy (AAS). Size distribution and morphology of the products obtained by TEM show spherical nanoparticles composites, with sizes between 3 and 10 nm for both extracts. Mossbauer spectra are consistent with superparamagnetic particles for both samples. Moreover, particles from both extracts showed mercury removal efficiencies above 75%. © Published under licence by IOP Publishing Ltd.}, url = {http://hdl.handle.net/11407/5809} }RT Generic T1 Green synthesis of magnetic nanoparticles using leaf extracts of Aloe vera and Kalanchoe daigremontiana to remove divalent mercury from natural waters A1 Morales G. A1 Campillo G. A1 Vélez E. A1 Osorio J. A1 Urquijo J. A1 Velásquez Á.A. LK http://hdl.handle.net/11407/5809 PB Institute of Physics Publishing AB In this study, magnetic nanoparticles of magnetite were prepared by an eco-friendly method using aqueous leaf extracts of Aloe vera and Kalanchoe daigremontiana. These vegetal extracts have suitable characteristics such as high availability, low cost, and serve as good colloidal stabilizers. Synthetized products were characterized by Transmission Electron Microscopy (TEM), Room Temperature Mossbauer Spectroscopy (RT-MS), and their potential use as adsorbents for Hg (II) removal in natural waters was evaluated by Atomic Absorption Spectroscopy (AAS). Size distribution and morphology of the products obtained by TEM show spherical nanoparticles composites, with sizes between 3 and 10 nm for both extracts. Mossbauer spectra are consistent with superparamagnetic particles for both samples. Moreover, particles from both extracts showed mercury removal efficiencies above 75%. © Published under licence by IOP Publishing Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In this study, magnetic nanoparticles of magnetite were prepared by an eco-friendly method using aqueous leaf extracts of Aloe vera and Kalanchoe daigremontiana. These vegetal extracts have suitable characteristics such as high availability, low cost, and serve as good colloidal stabilizers. Synthetized products were characterized by Transmission Electron Microscopy (TEM), Room Temperature Mossbauer Spectroscopy (RT-MS), and their potential use as adsorbents for Hg (II) removal in natural waters was evaluated by Atomic Absorption Spectroscopy (AAS). Size distribution and morphology of the products obtained by TEM show spherical nanoparticles composites, with sizes between 3 and 10 nm for both extracts. Mossbauer spectra are consistent with superparamagnetic particles for both samples. Moreover, particles from both extracts showed mercury removal efficiencies above 75%. © Published under licence by IOP Publishing Ltd.
URI
http://hdl.handle.net/11407/5809
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com