REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study

Thumbnail
Share this
Author
Torres A.M.
Correa J.D.

Citación

       
TY - GEN T1 - First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study AU - Torres A.M. AU - Correa J.D. UR - http://hdl.handle.net/11407/5885 PB - Springer AB - Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society. ER - @misc{11407_5885, author = {Torres A.M. and Correa J.D.}, title = {First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study}, year = {}, abstract = {Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society.}, url = {http://hdl.handle.net/11407/5885} }RT Generic T1 First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study A1 Torres A.M. A1 Correa J.D. LK http://hdl.handle.net/11407/5885 PB Springer AB Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects. © 2021, Korean Carbon Society.
URI
http://hdl.handle.net/11407/5885
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com