Mostrar el registro sencillo del ítem

dc.creatorGutiérrez-Mosquera H.
dc.creatorMarrugo-Negrete J.
dc.creatorDíez S.
dc.creatorMorales-Mira G.
dc.creatorMontoya-Jaramillo L.J.
dc.creatorJonathan M.P.
dc.date2021
dc.date.accessioned2021-02-05T14:57:38Z
dc.date.available2021-02-05T14:57:38Z
dc.identifier.issn3043894
dc.identifier.urihttp://hdl.handle.net/11407/5896
dc.descriptionTotal mercury (THg), methylmercury (MeHg) in water, sediments, macrophytes, fish and human health risks were analyzed and assessed from abandoned gold mining ponds (AGMPs)/ mining areas in Western Colombia to know its present environmental condition. Concentrations of THg in water (avg. 13.0 ± 13.73 ng L-1) was above the EPA threshold level (12 ng L-1), suggesting possible chronic effects. Sediment sample revealed that the ponds are methylated (%MeHg: 3.3–11). Macrophyte Eleocharis elegans presented higher THg content in the underground biomass (0.16 ± 0.13 µg g-1 dw) than in the aerial biomass (0.05 ± 0.04 µg g-1 dw) indicating accumulation of THg. MeHg was the most abundant chemical species in fish (MeHg/THg: 83.2–95.0%), signifying higher bioavailability and its risk towards human health. Fish samples (15%) indicate that THg were above WHO limit (0.5 µg g), particularly in Ctenolucius beani, Hoplias malabaricus and lowest in Sternopygus aequilabiatus and Geophagus pellegrini. Bioaccumulation and biomagnification of MeHg were higher in the carnivores representing a source of exposure and potential threat to human health. Fulton's condition factor (K) for bioaccumulation indicate a decrease with increasing trophic level of fishes. Overall results suggest, mercury species found in different AGMPs compartments should be monitored in this region. © 2020 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094845855&doi=10.1016%2fj.jhazmat.2020.124080&partnerID=40&md5=53d5bbbd41cee3c0d9d502282a03d92d
dc.sourceJournal of Hazardous Materials
dc.subjectAbandoned gold miningspa
dc.subjectColombiaspa
dc.subjectHuman health riskspa
dc.subjectMercuryspa
dc.subjectWater-sediment-fish matricesspa
dc.titleMercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.1016/j.jhazmat.2020.124080
dc.subject.keywordAbandoned mineseng
dc.subject.keywordAntennaseng
dc.subject.keywordBioaccumulationeng
dc.subject.keywordBiochemistryeng
dc.subject.keywordEconomic geologyeng
dc.subject.keywordEnvironmental Protection Agencyeng
dc.subject.keywordFisheng
dc.subject.keywordGold mineseng
dc.subject.keywordHealtheng
dc.subject.keywordHealth riskseng
dc.subject.keywordLakeseng
dc.subject.keywordMercury mineseng
dc.subject.keywordRisk assessmenteng
dc.subject.keywordAbandoned gold miningeng
dc.subject.keywordChemical specieseng
dc.subject.keywordEnvironmental conditionseng
dc.subject.keywordEnvironmental matrixeseng
dc.subject.keywordHuman health riskseng
dc.subject.keywordMercury distributioneng
dc.subject.keywordPotential threatseng
dc.subject.keywordSediment sampleseng
dc.subject.keywordMercury compoundseng
dc.subject.keywordCtenoluciuseng
dc.subject.keywordEleocharis eleganseng
dc.subject.keywordGeophaguseng
dc.subject.keywordHoplias malabaricuseng
dc.subject.keywordPisceseng
dc.subject.keywordSternopyguseng
dc.relation.citationvolume404
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationGutiérrez-Mosquera, H., Facultad de Ingeniería, Universidad Tecnológica del Chocó, Carrera 22 No.18B-10, Quibdó, Colombia, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationMarrugo-Negrete, J., Universidad de Córdoba, Carrera 6 No. 76-103, Montería, Córdoba, Colombia
dc.affiliationDíez, S., Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, E-08034, Spain
dc.affiliationMorales-Mira, G., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationMontoya-Jaramillo, L.J., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, Colombia
dc.affiliationJonathan, M.P., Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, Ciudad de México, C.P.07340, Mexico
dc.relation.referencesAnual, Z.F., Maher, W., Krikowa, F., Hakim, L., Ahmad, N.I., Foster, S., Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia (2018) Microchem. J., 140, pp. 214-221
dc.relation.referencesAlardhi, S.M., Albayati, T.M., Alrubaya, J.M., Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed bed column (2020) Heliyon, 6
dc.relation.referencesAlbayati, T.M., Application of nanoporous material MCM-41 in a membrane adsorption reactor (MAR) as a hybrid process for removal of methyl orange (2019) Desalin. Water Treat., 151, pp. 138-144
dc.relation.referencesAlbayati, T.M., Alwan, G.M., Mahdy, O.S., High performance methyl orange capture on magnetic nanoporous MCM-41 prepared by incipent wetness impregnation method (2017) Korean J. Chem. Eng., 34, pp. 259-265
dc.relation.referencesAlbayati, T.M., Doyle, A.M., Purification of aniline and nitro-substituted aniline contaminants from aqueous solution using Beta Zeolite (2014) Bulg. J. Sci. Educ., 23 (1), pp. 105-114
dc.relation.referencesAlbayati, T.M., Kalash, K.R., Polycyclic aromatic hydrocarbons adsorption from waste water using different types of prepared mesoporous materials MCM-41 in batch and fixed bed column (2020) Process Saf. Environ. Prot., 133, pp. 124-136
dc.relation.referencesAlbayati, T.M., Sabri, A.A., Abed, D.B., Adsorption of binary and multi heavy metals ions from aqueous solution by amine functionalized SBA-15 mesoporous adsorbent in a batch system (2019) Desalin. Water Treat., 151, pp. 315-321
dc.relation.referencesAlbayati, T.M., Sabri, A.A., Abed, D.B., Functionalized SBA-15 by amine group for removal of Ni (II) heavy metal ion in the batch adsorption system (2020) Desalin. Water Treat., 174, pp. 301-310
dc.relation.referencesAlbayati, T.M., Wilkinson, S.E., Garforth, A.A., Doyle, A.M., Hetrogenous alkane reactions over nanoporous catalysts (2014) Transp. Porous Media, 104, pp. 315-333
dc.relation.referencesAl-khodor, Y.A.A., Albayati, T.M., Employing sodium hydroxide in desulfurization of the actual heavy crude oil: theoretical optimization and experimental evaluation (2020) Process Saf. Environ. Prot., 136, pp. 334-342
dc.relation.referencesAl-Majed, N.B., Preston, M.R., Factors influencing the total mercury and methyl mercury in the hair of the fishermen of Kuwait (2000) Environ. Pollut., 109 (2), pp. 239-250
dc.relation.referencesAlvarez, S., Kolok, A., Jimenez, L., Granados, C., Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena river, Colombia (2012) Bull. Environ. Contam. Toxicol., 89, pp. 836-840
dc.relation.referencesArmstrong, F.A.J., Effects of mercury compounds on fish (1979) The Biogeochemistry of Mercury in the Environment, pp. 657-670. , J.O. Nriagu Elsevier/North Holland Biomedical Press New York
dc.relation.references(1997), ATSDR Toxicological profile for mercury. Draft for public comment (update). Prepared by Research Triangle Institute under Contract No. 205–93-0606. Prepared for U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, August
dc.relation.referencesAvigliano, E., Monferran, M.V., Sánchez, S., Wunderlin, D.A., Gastaminza, J., Volpedo, A.V., Distribution and bioaccumulation of 12 trace elements in water, sediment and tissues of the main fishery from different environments of the La Plata basin (South America): risk assessment for human consumption (2019) Chemosphere, 236
dc.relation.referencesAzevedo, L.S., Pestana, I.A., Rocha, A.R.M., Meneguelli-Souza, A.C., Lima, C.A.I., Almeida, M.G., Souza, C.M.M., Drought promotes increases in total mercury and methylmercury concentrations in fish from the lower Paraíba do Sul river, southeastern Brazil (2018) Chemosphere, 202, pp. 483-490
dc.relation.referencesBastos, W.R., Dórea, J.G., Bernardi, J.V.E., Lauthartte, L.C., Mussy, M.H., Lacerda, L.D., Malm, O., Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon (2015) Environ. Res., 140, pp. 191-197
dc.relation.referencesBenoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., Miller, C.L., Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems (2002) Biogeochemistry of Environmentally Important Trace Elements, ACS Symposium Series, 835, pp. 262-297. , American Chemical Society Washington
dc.relation.referencesBeauvais-Flück, R., Slaveykova, V.I., Cosio, C., Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii (2017) Sci. Rep., 7, pp. 1-12.
dc.relation.referencesBowles, K.C., Apte, S.C., Maher, W.A., Kawei, M., Smith, R., Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea (2001) Can. J. Fish. Aquat. Sci., 58 (5), pp. 888-897
dc.relation.referencesBozorgi, M., Abbasizadeh, S., Samani, F., Mousavi, S., Performance of synthesized cast and electrospun PVA/Chitosan/ZnO-NH2 nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from waste water (2018) Environ. Sci. Pollut. Res. Int., 25, pp. 17457-17472
dc.relation.referencesCaricchia, A.M., Minervini, G., Soldati, P., Chiavarini, S., Ubaldi, C., Morabito, R., GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion (1997) Microchem. J., 55, pp. 44-55
dc.relation.referencesCarranza‐Lopez, L., Caballero‐Gallardo, K., Cervantes‐Ceballos, L., Turizo‐Tapia, A., Olivero‐Verbel, J., multicompartment mercury contamination in major gold mining districts at the Department of Bolivar, Colombia (2019) Arch. Environ. Contam. Toxicol., 76, pp. 640-649
dc.relation.referencesCoquery, M., Welbourn, P.M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare (1995) Water Res., 29 (9), pp. 2094-2102
dc.relation.referencesCoquery, M., Cossa, D., Peretyazhko, T., Azemard, S., Charlet, L., Methylmer- cury formation in the anoxic waters of the Petit-Saut reservoir (French Guiana) and its spreading in the adjacent Sinnamary river (2003) J. Phys. IV Proc., 107 (1), pp. 327-331
dc.relation.referencesDíez, S., Bayona, J., Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction–gas chromatography–cold-vapour atomic fluorescence spectrometry (2002) J. Chromatogr. A, 963, pp. 345-351
dc.relation.referencesDonkor, A.K., Bonzongo, J.C., Nartey, V.K., Adotey, D.K., Mercury in different environmental compartments of the Para River Basin, Ghana (2006) Sci. Total Environ., 368, pp. 164-176
dc.relation.referencesDural, M., Goksu, A., Ozak, A., Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon (2007) Food Chem., 102, pp. 415-421
dc.relation.referencesEllis, R.W., Eslick, L., Variation and Range of Mercury Uptake into Plants at a Mercury-Contaminated Abandoned Mine Site (1997) Bull. Environ. Contam. Toxicol., 59, pp. 763-769
dc.relation.referencesErasmus, V.N., Iitembu, J.A., Hamutenya, S., Gamatham, J., Evidences of possible influences of methylmercury concentrations on condition factor and maturation of Lophius vomerinus (Cape monkfish) (2019) Mar. Pollut. Bull., 146, pp. 33-38
dc.relation.referencesFamoofo, O.O., Abdul, W.O., Biometry, condition factors and length-weight relationships of sixteen fish species in Iwopin fresh-water ecotype of Lekki Lagoon, Ogun State, Southwest Nigeria (2020) Heliyon, 6
dc.relation.referencesFarkas, A., Salánki, J., Specziár, A., Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site (2003) Water Res., 37 (5), pp. 959-964
dc.relation.referencesFernández-Gómez, C., Drott, A., Björn, E., Díez, S., Bayona, J.M., Tesfalidet, S., Lindfors, A., Skyllberg, U., Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal lake-wetland gradient (2013) Environ. Sci. Technol., 47, pp. 6279-6287
dc.relation.referencesFroese, R., Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations (2006) J. Appl. Ichthyol., 22, pp. 241-253
dc.relation.referencesFuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J.L., Díez, S., Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea (2018) Environ. Geochem. Health, 40, pp. 229-242
dc.relation.referencesGarnero, P.L., Bistoni, M., Monferran, M.V., Trace element concentrations in the six fish species from freshwater lentic environments and evaluation of possible health risks according to international standards of consumption (2020) Environ. Sci. Pollut. Res., 27 (22), pp. 27598-27608
dc.relation.referencesGerson, J.R., Driscoll, C.T., Hsu-Kim, H., Bernhardt, E.S., Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers (2018) Elem. Sci. Anthr., 6, p. 11
dc.relation.referencesGómez Tapias, J. Almanza Meléndez, M.F. Mapa Geológico De. Colomb. Serv. Geológico Colomb. 2015 2694513
dc.relation.referencesGray, J.E., Labson, V.F., Weaver, J.N., Krabbenhoft, D.P., Mercury and methylmercury contamination related to artisanal gold mining, Suriname (2002) Geophys. Res. Lett., 29 (23), pp. 20-21
dc.relation.referencesGutiérrez-Mosquera, H., Sujitha, S.B., Jonathan, M.P., Sarkar, S.K., Medina-Mosquera, F., Ayala-Mosquera, H., Arreola-Mendoza, L., Mercury levels in human population from a mining district in Western Colombia (2018) J. Environ. Sci., 8, pp. 1-8
dc.relation.referencesGutiérrez-Mosquera, H., Marrugo-Negrete, J.L., Díez, S., Morales-Mira, G., Montoya-Jaramillo, L.J., Jonathan, M.P., Distribution of chemical forms of mercury in sediments from abandoned ponds created during former gold mining operations in Colombia (2020) Chemosphere, 258
dc.relation.referencesHosseini, S.M., Mirghaffari, N., Sufiani, N.M., Hosseini, S.V., Ghasemi, A.F., Risk assessment of the total mercury in 36igest gray mullet (Liza aurata) from Caspian Sea (2013) Int. J. Aquat. Res. Biol., 1, pp. 258-265
dc.relation.references(2011), p. 330. , IGAC Estudio General de Suelos y Zonificación de Tierras del Departamento del Chocó, escala 1:100.000. Imprenta Nacional de Colombia. Bogotá
dc.relation.referencesIssaro, N., Abi-Ghanem, C., Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction (2009) Anal. Chim. Acta, 631, pp. 1-12
dc.relation.referencesJedrzejczak, R., Szteke, B., Reczajska, W., Mercury determination in food of plant origin by colevapour atomic absorption spectrometry (CVAAS) (1996) Rocz. Państwowego Zakładu Hig., 47, pp. 223-230
dc.relation.referencesJonge, M., Belpaire, C., Van Thuyne, G., Breine, J., Bervoets, L., Temporal distribution of accumulated metal mixtures in two feral fish species and the relation with condition metrics and community structure (2015) Environ. Pollut., 197, pp. 43-54
dc.relation.referencesKerin, E.J., Gilmour, C.C., Roden, E., Suzuki, M.T., Coates, J.D., Mason, R.P., Mercury methylation by dissimilatory iron-reducing bacteria (2006) Appl. Environ. Microbiol., 72 (12), pp. 7919-7921
dc.relation.referencesLacerda, L.D., Salomons, W., Mercury from gold and silver mining (1998) A Chemical. Time Bomb?, p. 146. , Springer Verlag Berlin
dc.relation.referencesLiebel, S., Tomotake, M.E.M., Oliveira Ribeiro, C.A.O., Fish histopathology as biomarker to evaluate water quality (2013) Ecotoxicol. Environ. Contam., 8, pp. 9-15
dc.relation.referencesLino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Mercury and selenium in fishes from the Tapajós River in the Brazilian Amazon: an evaluation of human exposure (2018) J. Trace Elem. Med. Biol., 48, pp. 196-201
dc.relation.referencesLino, A.S., Kasper, D., Guida, Y.S., Thomaz, J.R., Malm, O., Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajos River basin in the Brazilian Amazon (2019) Chemosphere, 235, pp. 690-700
dc.relation.referencesLusilao-Makiese, J.G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E.M., Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa (2016) Environ. Monit. Assess., 188, p. 47
dc.relation.referencesMarrugo-Negrete, J.L., Modelo predictivo de la contaminación por mercurio a partir del biomonitoreo con especies ícticas en ecosistemas de la región de La Mojana (2007), Tesis doctoral, Universidad del Valle Santiago de Cali
dc.relation.referencesMarrugo-Negrete, J., Benitez, L.N., Olivero-Verbel, J., Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia (2008) Arch. Environ. Contam. Toxicol., 55 (2), pp. 305-316
dc.relation.referencesMarrugo-Negrete, J., Olivero-Verebel, J., Ceballos, E.L., Norberto-Benitez, L., Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia (2008) Environ. Geochem. Health, 30 (1), pp. 21-30
dc.relation.referencesMarrugo-Negrete, J.L., Pinedo-Hernandez, J., Diez, S., Geochemistry of mercury in tropical swamps impacted by Gold mining (2015) Chemosphere, 134, pp. 44-51
dc.relation.referencesMarrugo-Negretea, J., Norberto-Benítez, L., Olivero-Verbel, J., Lansa, E., Vazquez-Gutierrez, F., Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia (2010) Int. J. Environ. Health Res., 20 (6), pp. 451-459
dc.relation.referencesMarrugo-Negrete, J.L., Vargas-Licona, S., Ruiz-Guzmán, J.A., Marrugo-Madrid, S., Bravo, A.G., Díez, S., Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia (2020) Environ. Res., 182
dc.relation.referencesMartyniuk, M.A.C., Couture, P., Tran, L., Beaupre, L., Power, M., Seasonal variation of total mercury and condition indices of Arctic charr (Salvelinus alpinus) in Northern Québec, Canada (2020) Sci. Total Environ., 738
dc.relation.referencesMason, R.P., Baumann, Z., Hansen, G., Yao, K.M., Coulibaly, M., Coulibaly, S., An assessment of the impact of artisanal and commercial gold mining on mercury and methylmercury levels in the environment and fish in Cote d'Ivoire (2019) Sci. Total Environ., 665, pp. 1158-1167
dc.relation.referencesMaurice-Bourgoin, L., Quiroga, I., Chincheros, J., Courau, P., Mercury distribution in waters and fishes of the upper Madeira River and mercury exposure in riparian Amazonian populations (2000) Sci. Total Environ., 260, pp. 73-86
dc.relation.referencesMechora, S., Germ, M., Stibilj, V., Monitoring of selenium in macrophytes-the case of Slovenia (2014) Chemosphere, 111, pp. 464-470
dc.relation.referencesMillán, R., Lominchar, M.A., Rodríguez-Alonso, J., Schmid, T., Sierra, M.J., Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain) (2014) J. Geochem. Explor., 140, pp. 104-110
dc.relation.references(2014), MME and UPME. Estudio de la cadena del mercurio en Colombia con énfasis en la actividad minera de oro. Tomo 3. Bogotá
dc.relation.referencesMolisani, M.M., Rocha, R., Machado, W., Barreto, R.C., Lacerda, L.D., Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil (2006) Braz. J. Biol., 66 (1), pp. 101-107
dc.relation.referencesMoore, T.R., Bubier, J.L., Heyes, A., Flelt, R.J., Methyl and total mercury in Boreal Wetland plants, experimental lakes area, Northwestern Ontario (1995) J. Environ. Qual., 24, pp. 845-850
dc.relation.referencesMuresan, B., Cossa, D., Richard, S., Dominique, Y., Mono methyl mercury sources in a tropical artificial reservoir (2008) Appl. Geochem., 23 (5), pp. 1101-1126
dc.relation.referencesNaeem, M., Salam, A., Tahir, S.S., Rauf, N., The effect of fish size and condition on the contents of twelve essential and non-essential elements in Aristichthys nobilis from Pakistan (2011) Pak. Vetinary J., 31 (2), pp. 109-112
dc.relation.referencesNogara, P.A., Oliveira, C.S., Schmitz, G.L., Piquini, P.C., Farina, M., Aschner, M., Rocha, J.B.T., Methylmercury's chemistry: from the environment to the mammalian brain (2019) BBA Gen. Subj., 1863
dc.relation.referencesO'Connor, D., Hou, D., Ok, Y.S., Mulder, J., Duan, L., Wu, Q., Wang, S., Rinklebe, J., Mercury speciation, transformation and transportation in soils, atmospheric flux and implications for risk management: a critical review (2019) Environ. Int., 126, pp. 747-761
dc.relation.referencesOlivero-Verbel, J., Caballero-Gallardo, K., Turizo-Tapia, A., Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia) (2015) Environ. Sci. Pollut. Res., 22 (8), pp. 5895-5907
dc.relation.referencesOlivero-Verbel, J., Carranza-Lopez, L., Caballero-Gallardo, K., Ripoll-Arboleda, A., Muñoz-Sosa, D., Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon (2016) Environ. Sci. Pollut. Res., 23 (20), pp. 20761-20771
dc.relation.referencesOuédraogo, O., Amyot, M., Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso) (2013) Sci. Total Environ., 444, pp. 243-254
dc.relation.referencesPalacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J., Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430
dc.relation.referencesPestana, I.A., Azevedo, L.S., Bastos, W.R., Magalhães de Souza, C.M., The impact of hydroelectric dams on mercury dynamics in South America: a review (2019) Chemosphere, 219, pp. 546-556
dc.relation.referencesPestana, I.A., Bastos, W.R., Almeida, M.G., Mussy, M.H., Souza, C.M., Methylmercury in environmental compartments of a hydroelectric reservoir in the Western Amazon, Brazil (2019) Chemosphere, 215, pp. 758-765
dc.relation.referencesPinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia (2015) Chemosphere, 119, pp. 1289-1295
dc.relation.referencesPinzón-Bedoya, C.H., Pinzón-Bedoya, M.L., Pinedo-Hernández, J., Urango-Cardenas, I., Marrugo-Negrete, J., Assessment of potential health risks associated with the intake of heavy metals in fish harvested from the largest Estuary in Colombia (2020) Int. J. Environ. Res. Public Health, 17
dc.relation.referencesRajabi, H.R., Roushani, M., Shamsipur, M., Development of a highly selective voltametric sensor for nanomolar detection of mercury ions using glassy carbon electrode modified with a novel ion imprinted polymeric nano meads and multiwall carbon nano tubes (2013) J. Electroanal. Chem., 693, pp. 16-22
dc.relation.referencesRajabi, H.R., Shamsipur, M., Zahedi, M.M., Roushani, M., On-line flow injections solid phase extraction using imprinted polymeric nano beads for the preconcentration and determination of mercury ions (2015) Chem. Eng. J., 259, pp. 330-337
dc.relation.referencesRoulet, M., Lucotte, M., Canuel, R., Farella, N., Courcelles, M., Guimaraes, J., Mergler, D., Amorim, M., Increase in mercury contamination recorded in lacustrine sediments following deforestation in central Amazon (2000) Chem. Geol., 165 (3), pp. 243-266
dc.relation.referencesRudd, J.W.M., Bodaly, R.A., Fisher, N.S., Kelly, C.A., Kopec, D., Whipple, C., Fifty years after its discharge, methylation of legacy mercury trapped in the Penobscot Estuary sustains high mercury in biota (2018) Sci. Total Environ., 642, pp. 1340-1352
dc.relation.referencesRudnick, R.L., Gao, S., Composition of the continental crust (2014) Treatise Geochem., 4, pp. 1-51
dc.relation.referencesSabri, A.A., Albayati, T.M., Alawawi, R.A., Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue (2015) Korean J. Chem. Eng., 32, pp. 1835-1841
dc.relation.referencesSadiq, M., Zaidi, T.H., Al-Mohama, M., Sample weight and digestion temperature as critical factors in mercury determination in fish (1991) Bull. Environ. Contam. Toxicol., 47, pp. 335-341
dc.relation.referencesSakamoto, M., Nakamura, M., Murata, K., Mercury as a global pollutant and mercury exposure assessment and health effects (2018) Jpn. J. Hyg., 73, pp. 258-264
dc.relation.referencesSalazar-Camacho, C., Salas-Moreno, M., Marrugo-Madrid, S., Marrugo-Negrete, J., Díez, S., Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia (2017) Environ. Int., 107, pp. 47-54
dc.relation.referencesSelin, N.E., Global biogeochemical cycling of mercury: a review (2009) Annu. Rev. Environ. Resour., 34, pp. 43-63
dc.relation.referencesShamsipur, M., Rajabi, H.M., Beyzavi, M.H., Sharghi, H., Bulk polymer nanoparticles containing a tetrakis (3-hydroxyphenyl) porphyrin for fast and highly selective separation of mercury ions (2013) Microchim. Acta, 180, pp. 791-799
dc.relation.referencesSilva, S.F., Oliveira, D.C., Pereira, J.P.G., Castro, S.P., Costa, B.N.S., Lima, M.O., Seasonal variation of mercury in commercial fishes of the Amazon Triple Frontier, Western Amazon Basin (2019) Ecol. Indic., 106, pp. 105-549.
dc.relation.referencesStrickman, R.J., Mitchell, C.P.J., Mercury methylation in storm water retention ponds at different stages in the management lifecycle (2018) Environ. Sci. Process. Impacts, 20, pp. 595-606
dc.relation.referencesTomiyasu, T., Kodamatani, H., Hamada, Y.K., Matsuyama, A., Imura, R., Taniguchi, Y., Hidayati, N., Rahajoe, J.S., Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia (2017) Environ. Sci. Pollut. Res., 24, pp. 2643-2652
dc.relation.referencesUllrich, S., Tanton, T., Abdrashitova, S., Mercury in the aquatic environment: a review of factors affecting methylation (2001) Crit. Rev. Environ. Sci. Technol., 31, pp. 241-293
dc.relation.referencesUSEPA, Risk Assessment Guidance for Superfund Volume I Human Health, Evaluation Manual (Part A), Interim Final. EPA/540/1-89/002 1989 United States Environmental Protection Agency, Washington, DC
dc.relation.referencesUSEPA, Water quality standards, establishment of numeric criteria for priority toxic pollutants States’ Compliance, Final rule. Fed. Regist., 40 CFR Part 131 246 1992 847 860
dc.relation.referencesUSEPA, Methods 2451 for determination of mercury in water 1994 U.S. Environmental Protection Agency, Cincinnati, OH
dc.relation.referencesUSEPA, Method 1630. Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry 1998a U.S. Environmental Protection Agency Office of Water,
dc.relation.referencesUSEPA, Method 7471B for determination of mercury in solid or semisolid waste 1998b U.S. Environmental Protection Agency, Cincinnati, OH
dc.relation.referencesUSEPA, Reference dose for mercury. External review. National Center for Environmental Assessment NCEA-S-0930 2000 U.S. Environmental Protection Agency, Cincinnati, OH
dc.relation.references(2014), 〈https://www.epa.gov/risk/oswer-directive-92001–120〉, USEPA Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors OSWER Directive 9200.1–120 Available at:
dc.relation.referencesVan Straaten, P., Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe (2000) Sci. Total Environ., 259 (1-3), pp. 105-113
dc.relation.referencesVieira, M., Bernardi, J.V.E., Dórea, J.G., Rocha, B.C.P., Ribeiro, R., Zara, L.F., Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon (2018) Environ. Pollut., 235, pp. 771-779
dc.relation.referencesWang, Y.L., Fang, M.D., Chien, L.C., Lin, C.C., Hsi, H.C., Distribution of mercury and methylmercury in surface water and surface sediment of river, irrigation canal, reservoir, and wetland in Taiwan (2019) Environ. Sci. Pollut. Res., 26, pp. 17762-17773
dc.relation.referencesWang, L., Hou, D., Cao, Y., Ok, Y.S., Tack, F.M.G., Rinklebe, J., O'Connor, D., Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies (2020) Environ. Int., 134
dc.relation.referencesWHO, Methylmercury. Environmental Health Criteria 101 1990 World Health Organization, Geneva, Switzerland
dc.relation.referencesZhang, W., Zhang, X., Tian, Y., Zhu, Y., Tong, Y., Li, Y., Wang, X., Risk assessment of total mercury and methylmercury in aquatic products from offshore farms in China (2018) J. Hazard. Mater., 354, pp. 198-205
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem