Show simple item record

dc.creatorRestrepo A.H.
dc.creatorRíos J.M.
dc.creatorArango F.
dc.creatorCorrea E.
dc.creatorZuleta A.A.
dc.creatorValencia-Escobar A.
dc.creatorBolivar F.J.
dc.creatorCastaño J.G.
dc.creatorEcheverría F.E.
dc.date2020
dc.date.accessioned2021-02-05T14:57:58Z
dc.date.available2021-02-05T14:57:58Z
dc.identifier.issn2683768
dc.identifier.urihttp://hdl.handle.net/11407/5927
dc.descriptionThe effect of speed and milling time on the morphology, crystallite size, and phase composition of Ti Cp powders processed in n-hexane by high-energy ball milling (HEBM) using a E-max Retsch equipment was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Lattice parameters, mean crystallite size, lattice strain, and dislocation density were obtained from Rietveld analysis. The XRD and TEM results show that the HEBM process of the Ti Cp promotes the transition from HCP to FCC after 6 h of milling at 1400 rpm. The transformation process could be attributed to the energy generated in the milling process which induces high deformation and presence of high-density dislocations in the powder. Graphical Abstract[Figure not available: see fulltext.]. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
dc.language.isoeng
dc.publisherSpringer
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089883157&doi=10.1007%2fs00170-020-05991-7&partnerID=40&md5=391843474c4d390f3df4e7ee9da7ce75
dc.sourceInternational Journal of Advanced Manufacturing Technology
dc.subjectAllotropic transformationspa
dc.subjectHigh-energy ball millingspa
dc.subjectMicrostructural analysisspa
dc.subjectTitaniumspa
dc.titleCharacterization of titanium powders processed in n-hexane by high-energy ball milling
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Materialesspa
dc.identifier.doi10.1007/s00170-020-05991-7
dc.subject.keywordBall millingeng
dc.subject.keywordCrystallite sizeeng
dc.subject.keywordHexaneeng
dc.subject.keywordHigh resolution transmission electron microscopyeng
dc.subject.keywordMilling (machining)eng
dc.subject.keywordPowderseng
dc.subject.keywordRietveld analysiseng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordX ray diffractioneng
dc.subject.keywordDislocation densitieseng
dc.subject.keywordHigh-energy ball millingeng
dc.subject.keywordLattice straineng
dc.subject.keywordMilling processeng
dc.subject.keywordMilling timeeng
dc.subject.keywordN hexaneeng
dc.subject.keywordTitanium powderseng
dc.subject.keywordTransformation processeng
dc.subject.keywordTitanium metallographyeng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationRestrepo, A.H., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationRíos, J.M., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationArango, F., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationCorrea, E., Grupo de Investigación Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 No 30 – 65, Medellín, Colombia
dc.affiliationZuleta, A.A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70 – 01, Medellín, Colombia
dc.affiliationValencia-Escobar, A., Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Circular 1 No 70 – 01, Medellín, Colombia
dc.affiliationBolivar, F.J., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationCastaño, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.affiliationEcheverría, F.E., Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, P. O. Box 1226, Calle 62 N° 52 – 59, Medellín, Colombia
dc.relation.referencesFang, Z.Z., Paramore, J.D., Sun, P., Ravi Chandran, K.S., Zhang, Y., Xia, Y., Cao, F., Free, M., Powder metallurgy of titanium–past, present, and future (2018) Int Mater Rev, 63 (7), pp. 407-459
dc.relation.referencesWang, M., Zhou, J., Yin, Y., Nan, H., Xue, P., Tu, Z., Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing (2017) J Alloys Compd, 721, pp. 320-332
dc.relation.referencesRomero, C., Yang, F., Bolzoni, L., Fatigue and fracture properties of Ti alloys from powder-based processes – a review (2018) Int J Fatigue, 117, pp. 407-419
dc.relation.referencesDuan, W., Yin, Y., Zhou, J., Wang, M., Nan, H., Zhang, P., Dynamic research on Ti6Al4V powder HIP densification process based on intermittent experiments (2019) J Alloys Compd, 771, pp. 489-497
dc.relation.referencesFuture prospects for titanium powder metallurgy markets (2015) Titanium Powder Metallurgy, pp. 579-600. , https://doi.org/10.1016/B978-0-12-800054-0.00030-7
dc.relation.referencesDuda, T., Raghavan, L.V., 3D metal printing technology (2016) Int Fed Autom Control (IFAC), 49 (29), pp. 103-110. , https://doi.org/10.1016/j.ifacol.2016.11.111
dc.relation.referencesBolzoni, L., (2011) Diseño Y Procesado De Aleaciones De Titanio Mediante Técnicas Pulvimetalúrgicas Avanzadas, , Tesis Doctoral, Universidad Carlos III de Madrid
dc.relation.referencesEsteban, P.G., Bolzoni, L., Ruiz-Navas, E.M., Gordo, E., Introducción al procesado pulvimetalúrgico del titanio (2011) Rev Metal, 47 (2), pp. 169-187
dc.relation.referencesNouri, A., Sola, A., Metal particle shape: a practical perspective (2018) Met Powder Rep, 73 (5), pp. 276-282
dc.relation.referencesPhasha, M., Maweja, K., Babst, C., Mechanical alloying by ball milling of Ti and Mg elemental powders: operation condition considerations (2010) J Alloys Compd, 492 (1-2), pp. 201-207
dc.relation.referencesDabhade, V.V., Rama Mohan, T.R., Ramakrishnan, P., Synthesis of nanosized titanium powder by high energy milling (2001) Appl Surf Sci, 182 (3-4), pp. 390-393
dc.relation.referencesGalindez, Y., Correa, E., Zuleta, A.A., Valencia-Escobar, A., Calderon, D., Toro, L., Chacon, P., Echeverría, F., Improved Mg–Al–Zn magnesium alloys produced by high energy milling and hot sintering (2019) Met Mater Int
dc.relation.referencesYang, L., (2015) Nanotechnology-enhanced metals and alloys for orthopedic implants, Nanotechnology-Enhanced Orthopedic Materials, , Elsevier Ltd, Amsterdam
dc.relation.referencesPhasha, M.J., Bolokang, A.S., Ngoepe, P.E., Solid-state transformation in nanocrystalline Ti induced by ball milling (2010) Mater Lett, 64 (10), pp. 1215-1218
dc.relation.referencesDorofeev, G.A., Lubnin, A.N., Lad Yanov, V.I., Mukhgalin, V.V., Puskkarev, B.E., Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons (2014) Phys Met Metallogr, 115 (2), pp. 157-168
dc.relation.referencesSuryanarayana, C., (2004) Mechanical alloying and milling, , Marcel Dekker, New York
dc.relation.referencesSuryanarayana, C., Froes, F.H.S., Nanocrystalline titanium-magnesium alloys through mechanical alloying (1990) J Mater Res, 5 (9), pp. 1880-1886
dc.relation.referencesSuzuki, T., Nagumo, N., Metastable intermediate phase formation at reaction milling of titanium and n-heptane (1995) Scr Metall Mater, 32 (8), pp. 1215-1220
dc.relation.referencesBolokang, A.S., Motaung, D.E., Arendse, C.J., Muller, T.F.G., Formation of the metastable FCC phase by ball milling and annealing of titanium-stearic acid powder (2015) Adv Powder Technol, 26 (2), pp. 632-639
dc.relation.referencesAvar, B., Ozcan, S., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments (2014) Ceram Int, 40 (7), pp. 11123-11130
dc.relation.referencesManna, I., Chattopadhyay, P.P., Nandi, P., Banhart, F., Fecht, H.J., Formation of face-centered-cubic titanium by mechanical attrition (2003) J Appl Phys, 93 (3), pp. 1520-1524
dc.relation.referencesWawner, F.E., Lawless, K.R., Epitaxial growth of titanium thin films (1969) J Vac Sci Technol, 6 (4), pp. 588-590
dc.relation.referencesSchneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9 (7), pp. 671-675
dc.relation.referencesWaseda, Y., Matsubara, E., Shinoda, K., (2001) X ray diffraction crystallography, , Springer, Berlin
dc.relation.referencesHajalilou, A., Hashim, M., Ebrahimi-Kahizsangi, R., Ismail, I., Sarami, N., Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering (2014) Adv Powder Technol, 25 (3), pp. 1094-1102
dc.relation.referencesAli, S., Karunanithi, R., Prashanth, M., Rahman, M.A., X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys (2019) Mater Today Proc, 27, pp. 2390-2393
dc.relation.referencesSakher, E., Loudjani, N., Benchiheub, M., Bououdina, M., Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using rietveld analysis (2018) J Nanomater, 2018, pp. 1-11
dc.relation.referencesSingh, P., Abhash, A., Yadav, N., Shafeeq, M., Singh, I.B., Mondal, D.P., Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy (2018) Powder Technol, 342, pp. 275-287
dc.relation.referencesAsano, K., Enoki, H., Akiba, E., Synthesis process of Mg–Ti BCC alloys by means of ball milling (2009) J Alloys Compd, 486 (1-2), pp. 115-123
dc.relation.referencesGhosh, B., Pradhan, S.K., Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying (2010) Mater Chem Phys, 120 (2-3), pp. 537-545
dc.relation.referencesShial, S.R., Masanta, M., Chaira, D., Recycling of waste Ti machining chips by planetary milling: generation of Ti powder and development of in situ TiC reinforced Ti-TiC composite powder mixture (2018) Powder Technol, 329, pp. 232-240
dc.relation.referencesHosseini-Gourajoubi, F., Pourabdoli, M., Uner, D., Raygan, S., Effect of process control agents on synthesizing nano-structured 2Mg-9Ni-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2 (2015) Adv Powder Technol, 26, pp. 448-453
dc.relation.referencesMa, Q., Froes, F.H.S., (2015) Titanium Powder Metallurgy, , Elsevier Inc., Amsterdam
dc.relation.referencesXu, W., Xiao, S., Lu, X., Chen, G., Liu, C., Qu, X., Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling (2019) J Mater Sci Technol, 35 (2), pp. 322-327
dc.relation.referencesZhou, H., Hu, L., Sun, Y., Zhang, H., Duan, C., Yu, H., Synthesis of nanocrystalline AZ31 magnesium alloy with titanium addition by mechanical milling (2016) Mater Charact, 113, pp. 108-116
dc.relation.referencesKurama, H., Erkuş, Ş., Gaşan, H., The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill (2017) Ceram Int, 43, pp. S391-S396
dc.relation.referencesZou, C., Long, Y., Zheng, X., Lin, H., Zhang, F., Effect of ball sizes on synthesis of OsB2 powders by mechanical alloying (2017) Ceram Int, 43 (18), pp. 17111-17115
dc.relation.referencesSuryanarayana, C., Mechanical alloying and milling (2001) Prog Mater Sci, 46 (1-2), pp. 1-184
dc.relation.referencesKeskinen, J., Pogany, A., Rubin, J., Ruuskanen, P., Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane (1995) Mater Sci Eng A, 196, pp. 205-211
dc.relation.referencesLohse, B.H., Calka, A., Wexler, D., Raman spectroscopy as a tool to study TiC formation during controlled ball milling (2005) J Appl Phys, 97 (11), pp. 1-7
dc.relation.referencesDelogu, F., Takacs, L., Mechanochemistry of Ti-C powder mixtures (2014) Acta Mater, 80, pp. 435-444
dc.relation.referencesChen, C., Qian, S., Wang, S., Niu, L., Liu, R., Liao, B., Zhong, Z., Wu, Y., The microstructure and formation mechanism of face-centered cubic Ti in commercial pure Ti foils during tensile deformation at room temperature (2018) Mater Charact, 136, pp. 257-263
dc.relation.referencesEdalati, K., Emami, H., Staykov, A., Smith, D.J., Akiba, E., Horita, Z., Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance (2015) Acta Mater, 99, pp. 150-156
dc.relation.referencesZhang, D.L., Ying, D.Y., Formation of fcc titanium during heating high energy ball milled Al-Ti powders (2002) Mater Lett, 52 (4-5), pp. 329-333
dc.relation.referencesHan, G., Lu, X., Xia, Q., Lei, B., Yan, Y., Shang, C.J., Face-centered-cubic titanium - a new crystal structure of Ti in a Ti-8Mo-6Fe alloy (2018) J Alloys Compd, 748, pp. 943-952
dc.relation.referencesLu, C.J., Zhang, J., Li, Z.Q., Structural evolution of titanium powder during ball milling in different atmospheres (2004) J Alloys Compd, 381 (1-2), pp. 278-283
dc.relation.referencesChatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of nanocrystalline titanium prepared by high-energy vibrational ball milling (2001) Appl Surf Sci, 182 (3-4), pp. 372-376
dc.relation.referencesChatterjee, P., Sen Gupta, S.P., An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium (2001) Philos Mag A, 81 (1), pp. 49-60
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record