REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emotional Networked maps from EEG signals

Thumbnail
Share this
Author
Gomez A.
Quintero O.L.
Lopez-Celani N.
Villa L.F.

Citación

       
TY - GEN T1 - Emotional Networked maps from EEG signals AU - Gomez A. AU - Quintero O.L. AU - Lopez-Celani N. AU - Villa L.F. UR - http://hdl.handle.net/11407/5950 PB - Institute of Electrical and Electronics Engineers Inc. AB - The EEG has showed that contains relevant information about recognition of emotional states. It is important to analyze the EEG signals to understand the emotional states not only from a time series approach but also determining the importance of the generating process of these signals, the location of electrodes and the relationship between the EEG signals. From the EEG signals of each emotional state, a functional connectivity measurement was used to construct adjacency matrices: lagged phase synchronization (LPS), averaging adjacency matrices we built a prototype network for each emotion. Based on these networks, we extracted a set node features seeking to understand their behavior and the relationship between them. We found through the strength and degree, the group of representative electrodes for each emotional state, finding differences from intensity of measurement and the spatial location of these electrodes. In addition, analyzing the cluster coefficient, degree, and strength, we find differences between the networks from the spatial patterns associated with the electrodes with the highest coefficient. This analysis can also gain evidence from the connectivity elements shared between emotional states, allowing to cluster emotions and concluding about the relationship of emotions from EEG perspective. © 2020 IEEE. ER - @misc{11407_5950, author = {Gomez A. and Quintero O.L. and Lopez-Celani N. and Villa L.F.}, title = {Emotional Networked maps from EEG signals}, year = {}, abstract = {The EEG has showed that contains relevant information about recognition of emotional states. It is important to analyze the EEG signals to understand the emotional states not only from a time series approach but also determining the importance of the generating process of these signals, the location of electrodes and the relationship between the EEG signals. From the EEG signals of each emotional state, a functional connectivity measurement was used to construct adjacency matrices: lagged phase synchronization (LPS), averaging adjacency matrices we built a prototype network for each emotion. Based on these networks, we extracted a set node features seeking to understand their behavior and the relationship between them. We found through the strength and degree, the group of representative electrodes for each emotional state, finding differences from intensity of measurement and the spatial location of these electrodes. In addition, analyzing the cluster coefficient, degree, and strength, we find differences between the networks from the spatial patterns associated with the electrodes with the highest coefficient. This analysis can also gain evidence from the connectivity elements shared between emotional states, allowing to cluster emotions and concluding about the relationship of emotions from EEG perspective. © 2020 IEEE.}, url = {http://hdl.handle.net/11407/5950} }RT Generic T1 Emotional Networked maps from EEG signals A1 Gomez A. A1 Quintero O.L. A1 Lopez-Celani N. A1 Villa L.F. LK http://hdl.handle.net/11407/5950 PB Institute of Electrical and Electronics Engineers Inc. AB The EEG has showed that contains relevant information about recognition of emotional states. It is important to analyze the EEG signals to understand the emotional states not only from a time series approach but also determining the importance of the generating process of these signals, the location of electrodes and the relationship between the EEG signals. From the EEG signals of each emotional state, a functional connectivity measurement was used to construct adjacency matrices: lagged phase synchronization (LPS), averaging adjacency matrices we built a prototype network for each emotion. Based on these networks, we extracted a set node features seeking to understand their behavior and the relationship between them. We found through the strength and degree, the group of representative electrodes for each emotional state, finding differences from intensity of measurement and the spatial location of these electrodes. In addition, analyzing the cluster coefficient, degree, and strength, we find differences between the networks from the spatial patterns associated with the electrodes with the highest coefficient. This analysis can also gain evidence from the connectivity elements shared between emotional states, allowing to cluster emotions and concluding about the relationship of emotions from EEG perspective. © 2020 IEEE. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
The EEG has showed that contains relevant information about recognition of emotional states. It is important to analyze the EEG signals to understand the emotional states not only from a time series approach but also determining the importance of the generating process of these signals, the location of electrodes and the relationship between the EEG signals. From the EEG signals of each emotional state, a functional connectivity measurement was used to construct adjacency matrices: lagged phase synchronization (LPS), averaging adjacency matrices we built a prototype network for each emotion. Based on these networks, we extracted a set node features seeking to understand their behavior and the relationship between them. We found through the strength and degree, the group of representative electrodes for each emotional state, finding differences from intensity of measurement and the spatial location of these electrodes. In addition, analyzing the cluster coefficient, degree, and strength, we find differences between the networks from the spatial patterns associated with the electrodes with the highest coefficient. This analysis can also gain evidence from the connectivity elements shared between emotional states, allowing to cluster emotions and concluding about the relationship of emotions from EEG perspective. © 2020 IEEE.
URI
http://hdl.handle.net/11407/5950
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com