REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Formulations for joint order picking problems in low-level picker-to-part systems

Thumbnail
Share this
Author
Cano J.A.

Citación

       
TY - GEN T1 - Formulations for joint order picking problems in low-level picker-to-part systems AU - Cano J.A. UR - http://hdl.handle.net/11407/5959 PB - Institute of Advanced Engineering and Science AB - This article introduces several mathematical formulations for the joint order picking problem (JOPP) in low-level picker-to-part warehousing systems. In order to represent real warehousing environments, the proposed models minimize performance measures such as travel distance, travel time and tardiness, considering multi-block warehouses, due dates, and multiple pickers. The number of constraints and decision variables required for each proposed model is calculated, demonstrating the complexity of solving medium and long-sized problems in reasonable computing time using exact methods, so it is still recommendable to solve these JOPP using metaheuristics. The proposed models can be followed as a reference for new solution methods that yield efficient and fast solutions. © 2020, Institute of Advanced Engineering and Science. All rights reserved. ER - @misc{11407_5959, author = {Cano J.A.}, title = {Formulations for joint order picking problems in low-level picker-to-part systems}, year = {}, abstract = {This article introduces several mathematical formulations for the joint order picking problem (JOPP) in low-level picker-to-part warehousing systems. In order to represent real warehousing environments, the proposed models minimize performance measures such as travel distance, travel time and tardiness, considering multi-block warehouses, due dates, and multiple pickers. The number of constraints and decision variables required for each proposed model is calculated, demonstrating the complexity of solving medium and long-sized problems in reasonable computing time using exact methods, so it is still recommendable to solve these JOPP using metaheuristics. The proposed models can be followed as a reference for new solution methods that yield efficient and fast solutions. © 2020, Institute of Advanced Engineering and Science. All rights reserved.}, url = {http://hdl.handle.net/11407/5959} }RT Generic T1 Formulations for joint order picking problems in low-level picker-to-part systems A1 Cano J.A. LK http://hdl.handle.net/11407/5959 PB Institute of Advanced Engineering and Science AB This article introduces several mathematical formulations for the joint order picking problem (JOPP) in low-level picker-to-part warehousing systems. In order to represent real warehousing environments, the proposed models minimize performance measures such as travel distance, travel time and tardiness, considering multi-block warehouses, due dates, and multiple pickers. The number of constraints and decision variables required for each proposed model is calculated, demonstrating the complexity of solving medium and long-sized problems in reasonable computing time using exact methods, so it is still recommendable to solve these JOPP using metaheuristics. The proposed models can be followed as a reference for new solution methods that yield efficient and fast solutions. © 2020, Institute of Advanced Engineering and Science. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This article introduces several mathematical formulations for the joint order picking problem (JOPP) in low-level picker-to-part warehousing systems. In order to represent real warehousing environments, the proposed models minimize performance measures such as travel distance, travel time and tardiness, considering multi-block warehouses, due dates, and multiple pickers. The number of constraints and decision variables required for each proposed model is calculated, demonstrating the complexity of solving medium and long-sized problems in reasonable computing time using exact methods, so it is still recommendable to solve these JOPP using metaheuristics. The proposed models can be followed as a reference for new solution methods that yield efficient and fast solutions. © 2020, Institute of Advanced Engineering and Science. All rights reserved.
URI
http://hdl.handle.net/11407/5959
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com