Mostrar el registro sencillo del ítem

dc.creatorRamirez A.
dc.creatorOcampo R.
dc.creatorGiraldo S.
dc.creatorPadilla E.
dc.creatorFlórez E.
dc.creatorAcelas N.
dc.date2020
dc.date.accessioned2021-02-05T14:58:39Z
dc.date.available2021-02-05T14:58:39Z
dc.identifier.issn22133437
dc.identifier.urihttp://hdl.handle.net/11407/6003
dc.descriptionBecause of its acute toxicity and high mobility, the hexavalent chromium [Cr (VI)] found in wastewater is a risk to the environment. In this study, activated carbon was produced from teakwood sawdust, which was chemically modified using ZnCl2 (AT) as an efficient adsorbent for Cr (VI) removal from aqueous systems. Batch experiments were conducted to identify kinetic, diffusional, and equilibrium parameters. In addition, to better understand the adsorption process, computer calculations were conducted based on the density functional theory (DFT). A maximum adsorption capacity of 72.46 mg g-1 was achieved by adapting experimental data to the Langmuir isotherm model. Intraparticle diffusion was further identified through a three-dimensional diffusion model, which revealed that it was ruled by intraparticular diffusion based on surface diffusion, with surface diffusion coefficient (Ds) values ranging from 1.29 × 10-10 to 0.78 × 10-10 cm2 s-1. Finally, computational chemistry calculations and an FTIR analysis determined that oxygenated functional groups, lactone, semiquinone, phenols, and carboxylic acids were involved in the process of Cr (VI) adsorption on AT. Moreover, the main adsorption mechanisms were found to be complexation, electrostatic interaction, and reduction of Cr (VI) to Cr (III). © 2020 Elsevier Ltd.
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079893939&doi=10.1016%2fj.jece.2020.103702&partnerID=40&md5=7cefb299e9fc676914e82d9ab836e1c3
dc.sourceJournal of Environmental Chemical Engineering
dc.subjectAdsorptionspa
dc.subjectBiomassspa
dc.subjectComputational simulationspa
dc.subjectHexavalent chromiumspa
dc.subjectKineticsspa
dc.titleRemoval of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.jece.2020.103702
dc.subject.keywordActivated carboneng
dc.subject.keywordAdsorptioneng
dc.subject.keywordChemical analysiseng
dc.subject.keywordChlorine compoundseng
dc.subject.keywordComputation theoryeng
dc.subject.keywordComputational chemistryeng
dc.subject.keywordDensity functional theoryeng
dc.subject.keywordFunctional groupseng
dc.subject.keywordIsothermseng
dc.subject.keywordSurface diffusioneng
dc.subject.keywordZinc chlorideeng
dc.subject.keywordAdsorption capacitieseng
dc.subject.keywordAdsorption mechanismeng
dc.subject.keywordChemically modifiedeng
dc.subject.keywordComputer calculationeng
dc.subject.keywordEquilibrium parameterseng
dc.subject.keywordHexavalent chromiumeng
dc.subject.keywordIntra-particle diffusioneng
dc.subject.keywordLangmuir isotherm modelseng
dc.subject.keywordChromium compoundseng
dc.relation.citationvolume8
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRamirez, A., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, Colombia
dc.affiliationOcampo, R., Department of Chemical Sciences, Autonomous University San Luis Potosí (UASLP), San Luis Potosí, Mexico
dc.affiliationGiraldo, S., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, Colombia
dc.affiliationPadilla, E., Department of Chemical Sciences, Autonomous University San Luis Potosí (UASLP), San Luis Potosí, Mexico
dc.affiliationFlórez, E., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, Colombia
dc.affiliationAcelas, N., Group of Materials with Impact (Matandmpac), Department of Basic Sciences, University of Medellín, Medellín, Colombia
dc.relation.referencesMohan, D., Pittman, C.U., Activated carbons and low cost adsorbents for remediation of tri- And hexavalent chromium from water (2006) J. Hazard. Mater., 137, pp. 762-811
dc.relation.referencesBarrera-Díaz, C.E., Lugo-Lugo, V., Bilyeu, B., A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction (2012) J. Hazard. Mater., 223-224, pp. 1-12
dc.relation.references(2007) Resolución 2115 de 2007, , http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislación_del_agua/Resolución_2115.pdf, Ministerio de la Protección Social, and Ministerio de Ambiente Vivienda y Desarrollo Territorial
dc.relation.referencesMinisterio De Ambiente, Y., Sostenible, D., (2015) Resolución 631 de 2015, , https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf
dc.relation.referencesChen, S.-S., Cheng, C.-Y., Li, C.-W., Chai, P.-H., Chang, Y.-M., Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process (2007) J. Hazard. Mater., 142, pp. 362-367
dc.relation.referencesGheju, M., Iovi, A., Balcu, I., Hexavalent chromium reduction with scrap iron in continuous-flow system: Part 1: Effect of feed solution pH (2008) J. Hazard. Mater., 153, pp. 655-662
dc.relation.referencesChen, G., Electrochemical technologies in wastewater treatment (2004) Sep. Purif. Technol., 38, pp. 11-41
dc.relation.referencesGolder, A.K., Chanda, A.K., Samanta, A.N., Ray, S., Removal of Cr (VI) from aqueous solution: Electrocoagulation vs chemical coagulation (2007) Sep. Sci. Technol., 42, pp. 2177-2193
dc.relation.referencesAgrawal, S.G., Fimmen, R.L., Chin, Y.-P., Reduction of Cr (VI) to Cr (III) by Fe (II) in the presence of fulvic acids and in lacustrine pore water (2009) Chem. Geol., 262, pp. 328-335
dc.relation.referencesKu, Y., Huang, Y.-H., Chou, Y.-C., Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr (VI) in aqueous solution (2011) J. Mol. Catal. A: Chem., 342, pp. 18-22
dc.relation.referencesSingh, R., Kumar, A., Kirrolia, A., Kumar, R., Yadav, N., Bishnoi, N.R., Lohchab, R.K., Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study (2011) Bioresour. Technol., 102, pp. 677-682
dc.relation.referencesSharma, S., Adholeya, A., Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi (2011) Int. Biodeterior. Biodegradation, 65, pp. 309-317
dc.relation.referencesEnniya, I., Rghioui, L., Jourani, A., Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels (2018) Sustain. Chem. Pharm., 7, pp. 9-16
dc.relation.referencesYang, J., Yu, M., Chen, W., Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics (2015) J. Ind. Eng. Chem., 21, pp. 414-422
dc.relation.referencesZhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M.-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies (2018) Bioresour. Technol., 268, pp. 149-157
dc.relation.referencesValentín-Reyes, J., García-Reyes, R., García-González, A., Soto-Regalado, E., Cerino-Córdova, F., Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons (2019) J. Environ. Manage., 236, pp. 815-822
dc.relation.referencesSaleh, T.A., Gupta, V.K., Al-Saadi, A.A., Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study (2013) J. Colloid Interface Sci., 396, pp. 264-269
dc.relation.referencesAl-Saadi, A.A., Saleh, T.A., Gupta, V.K., Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires (2013) J. Mol. Liq., 188, pp. 136-142
dc.relation.referencesHuang, Y., Hu, H., The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: A DFT study (2020) Chem. Eng. J., 381
dc.relation.references(1990) The Potential Use of Wood Residues for Energy Generation, , Rome
dc.relation.referencesRamirez, A.P., Giraldo, S., Ulloa, M., Flórez, E., Acelas, N.Y., Production and characterization of activated carbon from wood wastes (2017) J. Phys. Conf. Ser., 935
dc.relation.referencesNguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V., Bui, X.T., Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study (2015) Sci. Total Environ., 523, pp. 40-49
dc.relation.referencesBanerjee, M., Basu, R.K., Das, S.K., Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility (2018) Process Saf. Environ. Prot., 116, pp. 693-702
dc.relation.referencesGoertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination (2010) Carbon, 48, pp. 1252-1261
dc.relation.references(1992) METHOD 7196A - Chromium, Hexavalent (Colorimetric), pp. 1-6
dc.relation.referencesLagergren, S., Zur theorie der sogenannten adsorption geloster stoffe, K. Sven (1898) Vetenskapsakademiens Handl., 24, pp. 1-39
dc.relation.referencesBlanchard, G., Maunaye, M., Martin, G., Removal of heavy metals from waters by means of natural zeolites (1984) Water Res., 18, pp. 1501-1507
dc.relation.referencesZakaria, Z.A., Suratman, M., Mohammed, N., Ahmad, W.A., Chromium (VI) removal from aqueous solution by untreated rubber wood sawdust (2009) Desalination, 244, pp. 109-121
dc.relation.referencesKarthikeyan, T., Rajgopal, S., Miranda, L.R., Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon (2005) J. Hazard. Mater., 124 B, pp. 192-199
dc.relation.referencesKumar, A., Jena, H.M., Adsorption of Cr (VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2 (2017) Process Saf. Environ. Prot., 109, pp. 63-71
dc.relation.referencesFrisch, M.J., (2016) Gaussian 09. Revision A.02, , Wallingford CT
dc.relation.referencesKeith, T.A., Frisch, M.J., Inclusion of explicit solvent molecules in a self-consistent-reaction field model of solvation (1994) Model. Hydrog. Bond, pp. 22-35. , ACS Publications Washington, DC
dc.relation.referencesAcelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E., Adsorption of nitrate and bicarbonate on Fe-(hydr) oxide (2017) Inorg. Chem., 56, pp. 5455-5464
dc.relation.referencesReed, A.E., Weinstock, R.B., Weinhold, F., Natural population analysis (1985) J. Chem. Phys., 83, pp. 735-746
dc.relation.referencesLiu, J., Cheney, M.A., Wu, F., Li, M., Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces (2011) J. Hazard. Mater., 186, pp. 108-113
dc.relation.referencesMor, S., Adsorption of chromium from aqueous solution by activated alumina and activated charcoal (2007) Bioresour. Technol., 98, pp. 954-957
dc.relation.referencesChwastowski, J., Staroń, P., Kołoczek, H., Banach, M., Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber (2017) J. Mol. Liq., 248, pp. 981-989
dc.relation.referencesAnandkumar, J., Mandal, B., Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent (2009) J. Hazard. Mater., 168, pp. 633-640
dc.relation.referencesHe, Z., Qu, L., Wang, Z., Qian, J., Yi, S., Effects of zinc chloride - Silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism (2019) Sci. Rep., 9, pp. 1-7
dc.relation.referencesZhang, X., Lv, L., Qin, Y., Xu, M., Jia, X., Chen, Z., Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood (2018) Bioresour. Technol., 256, pp. 1-10
dc.relation.referencesZhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Hu, X., Huang, X., Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures (2016) Bioresour. Technol., 218, pp. 351-359
dc.relation.references(1996) Determination of Cr (VI) in Water, Waste Water, and Solid Waste Extracts, pp. 1-6. , http://www.dionex-france.com/library/literature/technical_notes/TN26_LPN034398-02.pdf, Tech. Note 26 LPN 034398-02 1M 1/98
dc.relation.referencesFurusawa, T., Smith, J.M., Fluid-particle and lntraparticle mass transport rates in slurries (1973) Ind. Eng. Chem. Fundam., 12, pp. 197-203
dc.relation.referencesBautista-Toledo, M.I., Rivera-Utrilla, J., Ocampo-Pérez, R., Carrasco-Marín, F., Sánchez-Polo, M., Cooperative adsorption of bisphenol-A and chromium (III) ions from water on activated carbons prepared from olive-mill waste (2014) Carbon, 73, pp. 338-350
dc.relation.referencesOcampo-Pérez, R., Aguilar-Madera, C.G., Díaz-Blancas, V., 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets (2017) Chem. Eng. J., 321, pp. 510-520
dc.relation.referencesLangmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc., 40, pp. 1361-1403
dc.relation.referencesFreundlich, H., Über die adsorption in lösungen (1907) Z. Phys. Chem., 57, pp. 385-470
dc.relation.referencesTemkin, M.J., Pyzhev, V., Recent modifications to Langmuir isotherms (1940) Acta Physicochim. USSR, 12, pp. 217-222
dc.relation.referencesNguyen, H., You, S., Hosseini-Bandegharaei, A., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review (2017) Water Res., 120, pp. 88-116
dc.relation.referencesHall, K., Eagleton, L., Acrivos, A., Vermeulen, T., Pore- And solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions (1966) Ind. Eng. Chem. Fundam., 5, pp. 212-223
dc.relation.referencesCherdchoo, W., Nithettham, S., Charoenpanich, J., Removal of Cr (VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea (2019) Chemosphere, 221, pp. 758-767
dc.relation.referencesChoudhary, B., Paul, D., Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar (2018) J. Environ. Chem. Eng., 6, pp. 2335-2343
dc.relation.referencesRangabhashiyam, S., Selvaraju, N., Adsorptive remediation of hexavalent chromium from synthetic wastewater by a natural and ZnCl2 activated Sterculia guttata shell (2015) J. Mol. Liq., 207, pp. 39-49
dc.relation.referencesZhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., Zhang, J., Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar (2017) Chemosphere, 186, pp. 422-429
dc.relation.referencesAcelas, N.Y., Flórez, E., Chloride adsorption on Fe-and Al-(hydr) oxide: Estimation of Gibbs free energies (2018) Adsorption, 24, pp. 243-248
dc.relation.referencesFlorez, E., Tiznado, W., Mondragón, F., Fuentealba, P., Theoretical study of the interaction of molecular oxygen with copper clusters (2005) J. Phys. Chem. A, 109, pp. 7815-7821
dc.relation.referencesKhaloo, S.S., Matin, A.H., Sharifi, S., Fadaeinia, M., Kazempour, N., Mirzadeh, S., Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell (2012) Water Sci. Technol., 65, pp. 1341-1349
dc.relation.referencesLi, H., Dong, X., Da Silva, E.B., De Oliveira, L.M., Chen, Y., Ma, L.Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications (2017) Chemosphere, 178, pp. 466-478
dc.relation.referencesScott, A.P., Radom, L., Harmonic vibrational frequencies: An evaluation of Hartree- Fock, Møller- Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors (1996) J. Phys. Chem., 100, pp. 16502-16513
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem