REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

System dynamics baseline model for determining a multivariable objective function optimization in Wireless Sensor Networks

Thumbnail
Share this
Author
Gonzalez-Palacio M.
Sepulveda-Cano L.
Valencia J.
D'Amato J.
Quiza-Montealegre J.
Palacio L.G.

Citación

       
TY - GEN T1 - System dynamics baseline model for determining a multivariable objective function optimization in Wireless Sensor Networks AU - Gonzalez-Palacio M. AU - Sepulveda-Cano L. AU - Valencia J. AU - D'Amato J. AU - Quiza-Montealegre J. AU - Palacio L.G. UR - http://hdl.handle.net/11407/6024 PB - IEEE Computer Society AB - Wireless Sensor Networks (WSN) are dedicated networks used in applications where environmental information must be collected, such as temperature, humidity, level, flow, pressure, rain, radiation, among others. These kinds of networks are constrained regarding power, bandwidth, number of nodes per area unit, etc. It is desirable that they operate without supervision and can work steadily in time, because they are normally located in difficult or far places. Nonetheless, some of these metrics are conflicting with others, so if one improves, some of the others get worse. So, it is mandatory to know what is the best combination of metrics that in conjunction can fit an application the best. Literature reports works where \neg optimization is used as a mathematical scheme to solve this problem, and two scenarios are provided: First, where a single objective function is proposed regarding one metric, and the other metrics are restricted via constraints, and second, where multi-objective optimization (MOOP) approaches are proposed, but without considering the whole set of significant metrics involved in WSN, so there is not a definitive solution that finds a real optimal set of metrics. System Dynamics (SD) is a computer-aided approach to design and analyze (mostly) social, economic and enterprise systems, that allows proposing a mathematical framework to analyze such complex systems, by using relationships of interdependence, mutual interaction, feedback and causality. This work aims to show a first dynamic hypothesis of a model that considers important metrics ofWSN, in order to find a set of equations that serve as objective functions in a MOOP context. By applying this methodology is possible to find some difficult relations between metrics, that are not clearly reported by previous work so far. © 2020 AISTI. ER - @misc{11407_6024, author = {Gonzalez-Palacio M. and Sepulveda-Cano L. and Valencia J. and D'Amato J. and Quiza-Montealegre J. and Palacio L.G.}, title = {System dynamics baseline model for determining a multivariable objective function optimization in Wireless Sensor Networks}, year = {}, abstract = {Wireless Sensor Networks (WSN) are dedicated networks used in applications where environmental information must be collected, such as temperature, humidity, level, flow, pressure, rain, radiation, among others. These kinds of networks are constrained regarding power, bandwidth, number of nodes per area unit, etc. It is desirable that they operate without supervision and can work steadily in time, because they are normally located in difficult or far places. Nonetheless, some of these metrics are conflicting with others, so if one improves, some of the others get worse. So, it is mandatory to know what is the best combination of metrics that in conjunction can fit an application the best. Literature reports works where \neg optimization is used as a mathematical scheme to solve this problem, and two scenarios are provided: First, where a single objective function is proposed regarding one metric, and the other metrics are restricted via constraints, and second, where multi-objective optimization (MOOP) approaches are proposed, but without considering the whole set of significant metrics involved in WSN, so there is not a definitive solution that finds a real optimal set of metrics. System Dynamics (SD) is a computer-aided approach to design and analyze (mostly) social, economic and enterprise systems, that allows proposing a mathematical framework to analyze such complex systems, by using relationships of interdependence, mutual interaction, feedback and causality. This work aims to show a first dynamic hypothesis of a model that considers important metrics ofWSN, in order to find a set of equations that serve as objective functions in a MOOP context. By applying this methodology is possible to find some difficult relations between metrics, that are not clearly reported by previous work so far. © 2020 AISTI.}, url = {http://hdl.handle.net/11407/6024} }RT Generic T1 System dynamics baseline model for determining a multivariable objective function optimization in Wireless Sensor Networks A1 Gonzalez-Palacio M. A1 Sepulveda-Cano L. A1 Valencia J. A1 D'Amato J. A1 Quiza-Montealegre J. A1 Palacio L.G. LK http://hdl.handle.net/11407/6024 PB IEEE Computer Society AB Wireless Sensor Networks (WSN) are dedicated networks used in applications where environmental information must be collected, such as temperature, humidity, level, flow, pressure, rain, radiation, among others. These kinds of networks are constrained regarding power, bandwidth, number of nodes per area unit, etc. It is desirable that they operate without supervision and can work steadily in time, because they are normally located in difficult or far places. Nonetheless, some of these metrics are conflicting with others, so if one improves, some of the others get worse. So, it is mandatory to know what is the best combination of metrics that in conjunction can fit an application the best. Literature reports works where \neg optimization is used as a mathematical scheme to solve this problem, and two scenarios are provided: First, where a single objective function is proposed regarding one metric, and the other metrics are restricted via constraints, and second, where multi-objective optimization (MOOP) approaches are proposed, but without considering the whole set of significant metrics involved in WSN, so there is not a definitive solution that finds a real optimal set of metrics. System Dynamics (SD) is a computer-aided approach to design and analyze (mostly) social, economic and enterprise systems, that allows proposing a mathematical framework to analyze such complex systems, by using relationships of interdependence, mutual interaction, feedback and causality. This work aims to show a first dynamic hypothesis of a model that considers important metrics ofWSN, in order to find a set of equations that serve as objective functions in a MOOP context. By applying this methodology is possible to find some difficult relations between metrics, that are not clearly reported by previous work so far. © 2020 AISTI. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Wireless Sensor Networks (WSN) are dedicated networks used in applications where environmental information must be collected, such as temperature, humidity, level, flow, pressure, rain, radiation, among others. These kinds of networks are constrained regarding power, bandwidth, number of nodes per area unit, etc. It is desirable that they operate without supervision and can work steadily in time, because they are normally located in difficult or far places. Nonetheless, some of these metrics are conflicting with others, so if one improves, some of the others get worse. So, it is mandatory to know what is the best combination of metrics that in conjunction can fit an application the best. Literature reports works where \neg optimization is used as a mathematical scheme to solve this problem, and two scenarios are provided: First, where a single objective function is proposed regarding one metric, and the other metrics are restricted via constraints, and second, where multi-objective optimization (MOOP) approaches are proposed, but without considering the whole set of significant metrics involved in WSN, so there is not a definitive solution that finds a real optimal set of metrics. System Dynamics (SD) is a computer-aided approach to design and analyze (mostly) social, economic and enterprise systems, that allows proposing a mathematical framework to analyze such complex systems, by using relationships of interdependence, mutual interaction, feedback and causality. This work aims to show a first dynamic hypothesis of a model that considers important metrics ofWSN, in order to find a set of equations that serve as objective functions in a MOOP context. By applying this methodology is possible to find some difficult relations between metrics, that are not clearly reported by previous work so far. © 2020 AISTI.
URI
http://hdl.handle.net/11407/6024
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com