REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems

Thumbnail
Share this
Author
Cano J.A.
Correa-Espinal A.
Gómez-Montoya R.

Citación

       
TY - GEN T1 - Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems AU - Cano J.A. AU - Correa-Espinal A. AU - Gómez-Montoya R. UR - http://hdl.handle.net/11407/6043 PB - Inderscience Publishers AB - This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd. ER - @misc{11407_6043, author = {Cano J.A. and Correa-Espinal A. and Gómez-Montoya R.}, title = {Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems}, year = {}, abstract = {This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd.}, url = {http://hdl.handle.net/11407/6043} }RT Generic T1 Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems A1 Cano J.A. A1 Correa-Espinal A. A1 Gómez-Montoya R. LK http://hdl.handle.net/11407/6043 PB Inderscience Publishers AB This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd.
URI
http://hdl.handle.net/11407/6043
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com