REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems

Thumbnail
Compartir este ítem
Autor
Cano J.A.
Correa-Espinal A.
Gómez-Montoya R.

Citación

       
TY - GEN T1 - Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems AU - Cano J.A. AU - Correa-Espinal A. AU - Gómez-Montoya R. UR - http://hdl.handle.net/11407/6043 PB - Inderscience Publishers AB - This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd. ER - @misc{11407_6043, author = {Cano J.A. and Correa-Espinal A. and Gómez-Montoya R.}, title = {Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems}, year = {}, abstract = {This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd.}, url = {http://hdl.handle.net/11407/6043} }RT Generic T1 Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems A1 Cano J.A. A1 Correa-Espinal A. A1 Gómez-Montoya R. LK http://hdl.handle.net/11407/6043 PB Inderscience Publishers AB This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
This article aims to introduce a metaheuristic to solve the order batching problem in multi-parallel-aisle warehouse systems to minimise the travelled distance. The proposed metaheuristic is based on an item-oriented genetic algorithm (GA) using a new chromosome representation where a gen represents a customer order to guarantee feasibility in the mutation operator, decreasing the correction of chromosomes generated by the crossover operator, and avoiding the calculation of the minimum number of feasible batches. When comparing the performance of the proposed algorithm with the first-come-first-served (FCFS) rule in 360 instances, we found average savings of 11% (up to 24%) in travelled distance and 2% (up to 17%) in the number of batches. The proposed algorithm can be easily integrated into a warehouse management system (WMS) to provide significant savings in travelled distances, increasing the efficiency of order-picking operations, and reducing the consumption of energy sources required by picking devices. Copyright © 2020 Inderscience Enterprises Ltd.
URI
http://hdl.handle.net/11407/6043
Colecciones
  • Indexados Scopus [2005]
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com