Mostrar el registro sencillo del ítem

dc.creatorCruz Y.
dc.creatorCarmago G.
dc.creatorGallego J.L.
dc.creatorSaldarriaga J.F.
dc.date2019
dc.date.accessioned2021-02-05T14:59:01Z
dc.date.available2021-02-05T14:59:01Z
dc.identifier.issn22839216
dc.identifier.urihttp://hdl.handle.net/11407/6054
dc.descriptionPlant growth rate represents one of the main factors in the vegetal-model bioassays design and the development of phytoremediation technologies. Lolium perenne is a promising plant to heavy metals monitoring and phytoremediation, but bioassays protocols and toxicity limits are needed. In this research, the effects of cadmium and mercury on germination time and emergence as toxicity markers of Lolium perenne plants were determined. Seeds were exposed to increasing concentrations in the range of 0 to 25 mg/L of cadmium (Cd2+) and mercury (Hg2+) in Petri dishes, by independent experiments carried out for 14 d. Emergence, root and shot length were assessed and kinetic parameters of growth were calculated. After 14 d, the maximum germination index of control seeds was 78.7 ± 4.8 %. The treatment of 25 mg/L Cd2+ posed an inhibitory effect on the seeds emergence of 24.7 %, and reduced the velocity germination Index (VGI). The maximum germination index of Hg2+ treated seeds had not significant differences to control. Toxic effects of Cd2+ and Hg2+ were found on the development of stem and roots of Lolium perenne, however, the range of concentrations which the plant grows well, is considered a suitable condition to potentially act as a phytoremediator. The kinetic parameters of growth are useful to perform toxicity tests and phytoremediation protocols of Lolium perenne. Copyright © 2019, AIDIC Servizi S.r.l.
dc.language.isoeng
dc.publisherItalian Association of Chemical Engineering - AIDIC
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067004931&doi=10.3303%2fCET1974241&partnerID=40&md5=5c539645ee0c1fa9c32b6a351402e01e
dc.sourceChemical Engineering Transactions
dc.titleA Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.3303/CET1974241
dc.relation.citationvolume74
dc.relation.citationstartpage1441
dc.relation.citationendpage1446
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationCruz, Y., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
dc.affiliationCarmago, G., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
dc.affiliationGallego, J.L., Deparment of Environmental Engineering, Universidad de Medellin, Carrera 87 #30-65, Medellín, Colombia
dc.affiliationSaldarriaga, J.F., Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
dc.relation.referencesAl-Ansari, F., Ksiksi, T., A quantitative assessment of germination parameters: The case of Crotalaria persica and Tephrosia apollinea (2016) The Open Ecology Journal, 91
dc.relation.referencesAl-Helal, A.A., Effect of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa (1995) Journal-univeRsity of Kuwait Science, 22, p. 76
dc.relation.referencesAli, H., Khan, E., Sajad, M.A., Phytoremediation of heavy metals—concepts and applications (2013) Chemosphere, 917, pp. 869-881
dc.relation.referencesBeltrán Pineda, M.E., Gómez Rodríguez, A.M., (2016) Biorremediación De Metales Pesados Cadmio Cd, Cromo Cr Y Mercurio Hg Mecanismos Bioquímicos E Ingeniería genéticA: Una Revisión, pp. 172-197. , Facultad de Ciencias Básicas de la Universidad MIlitar Nueva Granada
dc.relation.referencesGuerrero, B., Llugany, M., Palacios, O., Valiente, M., Dual effects of different selenium species on wheat (2014) Plant Physiology and Biochemistry, 83, pp. 300-307
dc.relation.referencesHuang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., Hu, Z., Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne (2018) Ecotoxicology and Environmental Safety, 153, pp. 229-237
dc.relation.referencesInostroza-Blancheteau, C., Reyes-Díaz, M., Berríos, G., Rodrigues-Salvador, A., Nunes-Nesi, A., Deppe, M., Alberdi, M., Physiological and biochemical responses to manganese toxicity in ryegrass Lolium perenne L. Genotypes (2017) Plant Physiology and Biochemistry, 113, pp. 89-97
dc.relation.referencesKumar, R., Kumar, R., Mishra, V., Qidwai, A., Pandey, A., Kant, S., Chapter 13 - Detoxification and tolerance of heavy metals in plants (2016) Plant Metal Interaction, pp. 335-359
dc.relation.referencesLondoño Franco, L.F., Londoño Muñoz, T., Muñoz García, G., Los riesgos de los metales pesados en la salud humana y animal (2016) Biotecnología En El Sector, pp. 145-153
dc.relation.referencesLyu, J., Park, J., Pandey, L.K., Choi, S., Lee, H., De Saeger, J., Han, T., Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L (2018) Ecotoxicology and Environmental Safety, 149, pp. 225-232
dc.relation.referencesMithöfer, A., Schulze, B., Boland, W., Biotic and heavy metal stress response in plants: Evidence for common signals (2004) FEBS Letters, 5661-3, pp. 1-5
dc.relation.referencesMorales, G.E., Gallego, J.L., Determinación de los efectos tóxicos del mercurio en la especie Brachiaria dictyoneura Fig (2013) De Not. Stapf. Avances En Ciencias E Ingeniería, 41, pp. 1-17
dc.relation.referencesPoschenrieder, C., Cabot, C., Martos, S., Gallego, B., Barceló, J., Do toxic ions induce hormesis in plants? (2013) Plant Science, 212, pp. 15-25
dc.relation.referencesPrieto Méndez, J., González Ramírez, C., Román Gutiérrez, A., Prieto García, F., Contaminación y fitotoxicidad en plantas por metales pesados provenientes de sueño y agua (2009) Tropical and Subtropical Agroecosystems, pp. 29-44
dc.relation.referencesQi, N., Zhang, X., Research on soil heavy metal accumulation and chemical environmental quality evaluation based on environment law (2017) Chemical Engineering Transactions, 62, pp. 493-498
dc.relation.referencesRahman, M.A., Reichman, S.M., De Filippis, L., Sany, S.B.T., Hasegawa, H., Phytoremediation of toxic metals in soils and wetlands: Concepts and applications (2016) Environmental Remediation Technologies for Metal-Contaminated Soils, pp. 161-195. , Springer, Tokyo
dc.relation.referencesRana, M.N., Tangpong, J., Rahman, M.M., Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: A mini review (2018) Toxicology Reports
dc.relation.referencesReyes, Y., Vergara, I., Torres, O., Díaz, M., González, E., Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria (2016) Revista Ingeniería, Investigación Y Desarrollo, pp. 66-77
dc.relation.referencesRufino, R.D., Luna, J.M., Campos-Takaki, G.M., Ferreira, S.R., Sarubbo, L.A., Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals (2012) Chem. Eng, 27, pp. 61-66
dc.relation.referencesShah, F., Ahmad, N., Masood, K., Peralta-Videa, J., Ahmad, F., Heavy metal toxicity in plants (2010) Plant Adaptation and Phytoremediation, pp. 71-97
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem