Mostrar el registro sencillo del ítem

dc.creatorKoverga A.A.
dc.creatorFlórez E.
dc.creatorDorkis L.
dc.creatorRodriguez J.A.
dc.date2019
dc.date.accessioned2021-02-05T14:59:03Z
dc.date.available2021-02-05T14:59:03Z
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/6063
dc.descriptionIn this work, a systematic study on the adsorption of atomic and molecular hydrogen and carbon oxides on cubic (001) and hexagonal (0001) WC surfaces by periodical density functional theory is reported. Calculations have been performed by employing the Perdew-Burke-Ernzerhof exchange correlation functional with van der Waals corrections to account for the dispersive force term. In addition, dipole corrections were applied for W- and C-terminated hexagonal WC(0001) surfaces. Good agreement is found between calculated and reported data for representative bulk properties. Regarding surface properties, our results indicate that atomic hydrogen adsorbs quite strongly while H 2 does, in general, dissociatively on the studied surfaces, with very small energy barriers (<0.35 eV) for the cleavage of the H-H bonds. The C sites of the carbide play an essential role in the binding of H atoms and the cleavage of H-H bonds. Studies examining the interaction of tungsten carbide with CO and CO 2 also evidence the importance of C sites. The reactivity of C- and W-terminated (0001) hexagonal WC surfaces significantly differs. Atomic hydrogen, carbon monoxide, and CO 2 are more stable on a C- than on a W-terminated surface, and only this latter termination is able to cleave spontaneously a C-O bond of the CO 2 molecule. This difference in reactivity may open a number of possibilities for fine-tuning the selectivity of the resulting material or designing compounds catalytically active for specific reactions by carefully adjusting the proportion of C, W, and mixed terminations during the synthesis procedure. © 2019 American Chemical Society.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85064333647&doi=10.1021%2facs.jpcc.8b11840&partnerID=40&md5=69aeae72a60aa821d282c98c9c4f30dc
dc.sourceJournal of Physical Chemistry C
dc.titleCO, CO 2 , and H 2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1021/acs.jpcc.8b11840
dc.relation.citationvolume123
dc.relation.citationissue14
dc.relation.citationstartpage8871
dc.relation.citationendpage8883
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationKoverga, A.A., Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia Sede Medellín, Medellín, 050041, Colombia, Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Grupo de Investigación Matandmpac, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationDorkis, L., Facultad de Minas, Departamento de Materiales y Minerales, Grupo de Investigación en Catálisis y Nanomateriales, Universidad Nacional de Colombia Sede Medellín, Medellín, 050041, Colombia
dc.affiliationRodriguez, J.A., Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States
dc.relation.referencesLevy, R.B., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesLee, J., Locatelli, S., Oyama, S.T., Boudart, M., Molybdenum Carbide Catalysts 3. Turnover Rates for the Hydrogenolysis of n-butane (1990) J. Catal., 125, pp. 157-170
dc.relation.referencesLee, J.S., Yeom, M.H., Lee, D.-S., Catalysis by Molybdenum Carbide in Activation of C-C, C-O and C-H bonds (1990) J. Mol. Catal., 62, pp. L45-L51
dc.relation.referencesLee, J., Yeom, M.H., Park, K.Y., Nam, I.-S., Chung, J.S., Kim, Y.G., Moon, S.H., Preparation and Benzene Hydrogenation Activity of Supported Molybdenum Carbide Catalysts (1991) J. Catal., 128, pp. 126-136
dc.relation.referencesLedoux, M.J., Huu, C.P., Guille, J., Dunlop, H., Compared Activities of Platinum and High Specific Surface Area Mo 2 C and WC Catalysts for Reforming Reactions: I. Catalyst Activation and Stabilization: Reaction of n-hexane (1992) J. Catal., 134, pp. 383-398
dc.relation.referencesLee, J.S., Lee, K.H., Lee, J.Y., Selective Chemisorption of Carbon Monoxide and Hydrogen over Supported Molybdenum Carbide Catalysts (1992) J. Phys. Chem., 96, pp. 362-366
dc.relation.referencesJohansson, L., Electronic and Structural Properties of Transition-Metal Carbide and Nitride Surfaces (1995) Surf. Sci. Rep., 21, pp. 177-250
dc.relation.referencesChen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498
dc.relation.referencesClaridge, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvarez, C., Sloan, J., Tsang, S.C., Green, M.L.H., New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten carbide (1998) J. Catal., 180, pp. 85-100
dc.relation.referencesOshikawa, K., Nagai, M., Omi, S., Characterization of Molybdenum Carbides for Methane Reforming by TPR, XRD, and XPS (2001) J. Phys. Chem. B, 105, pp. 9124-9131
dc.relation.referencesHwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesLiu, P., Rodriguez, J.A., Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces: Essential Role of the Oxycarbide (2006) J. Phys. Chem. B, 110, pp. 19418-19425
dc.relation.referencesViñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalyst size matters: Tuning the molecular mechanism of the water-gas shift reaction on titanium carbide based compounds (2008) J. Catal., 260, pp. 103-112
dc.relation.referencesSchweitzer, N.M., Schaidle, J.A., Ezekoye, O.K., Pan, X., Linic, S., Thompson, L.T., High Activity Carbide Supported Catalysts for Water Gas Shift (2011) J. Am. Chem. Soc., 133, pp. 2378-2381
dc.relation.referencesPorosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO 2 to CO (2014) Angew. Chem., Int. Ed., 53, pp. 6705-6709
dc.relation.referencesWilliams, W.S., Cubic Carbides (1966) Science, 152, pp. 34-42
dc.relation.referencesNelson, J.A., Wagner, M.J., High Surface Area Nanoparticulate Transition Metal Carbides Prepared by Alkalide Reduction (2002) Chem. Mater., 14, pp. 4460-4463
dc.relation.referencesHunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y., Engineering Non-Sintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis (2014) Angew. Chem., Int. Ed., 53, pp. 5131-5136
dc.relation.referencesFerri, T., Gozzi, D., Latini, A., Hydrogen Evolution Reaction (HER) at Thin Film and Bulk TiC Electrodes (2007) Int. J. Hydrogen Energy, 32, pp. 4692-4701
dc.relation.referencesJalan, V., Frost, D.G., (1989), U.S. Patent 4,795,684
dc.relation.referencesMichalsky, R., Zhang, Y.-J., Peterson, A.A., Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts (2014) ACS Catal., 4, pp. 1274-1278
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO 2 Activation and Hydrogenation on δ-MoC(001) and β-Mo 2 C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesBarthos, R., Széchenyi, A., Koós, Á., Solymosi, F., The Decomposition of Ethanol over Mo2C/Carbon Catalysts (2007) Appl. Catal., A, 327, pp. 95-105
dc.relation.referencesPorosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO 2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
dc.relation.referencesNikolov, I., Vitanov, T., Nikolova, V., The Effect of the Method of Preparation on the Catalytic Activity of Tungsten Carbide for Hydrogen Evolution (1980) J. Power Sources, 5, pp. 197-206
dc.relation.referencesNikolov, I., Petrov, K., Vitanov, T., Guschev, A., Tungsten Carbide Cathodes for Electrolysis of Sulphuric Acid Solutions (1983) Int. J. Hydrogen Energy, 8, pp. 437-440
dc.relation.referencesNikiforov, A.V., Petrushina, I.M., Christensen, E., Alexeev, N.V., Samokhin, A.V., Bjerrum, N.J., WC as a Non-Platinum Hydrogen Evolution Electrocatalyst for High Temperature PEM Water Electrolysers (2012) Int. J. Hydrogen Energy, 37, pp. 18591-18597
dc.relation.referencesTong, Y.-J., Wu, S.-Y., Chen, H.-T., Adsorption and Reaction of CO and H 2 O on WC(0001) Surface: A First-Principle Investigation (2018) Appl. Surf. Sci., 428, pp. 579-585
dc.relation.referencesZheng, W., Chen, L., Density Functional Study of H 2 O Adsorption and Dissociation on WC(0001) (2014) Comput. Theor. Chem., 1039, pp. 75-80
dc.relation.referencesXi, Y., Huang, L., Forrey, R.C., Cheng, H., Interactions between Hydrogen and Tungsten Carbide: A First Principles Study (2014) RSC Adv., 4, pp. 39912-39919
dc.relation.referencesMarinelli, F., Jelea, A., Allouche, A., Interactions of H with Tungsten Carbide Surfaces: An Ab Initio Study (2007) Surf. Sci., 601, pp. 578-587
dc.relation.referencesGaston, N., Hendy, S., Hydrogen adsorption on model tungsten carbide surfaces (2009) Catal. Today, 146, pp. 223-229
dc.relation.referencesWang, T., Li, Y.-W., Wang, J., Beller, M., Jiao, H., Dissociative Hydrogen Adsorption on the Hexagonal Mo2C Phase at High Coverage (2014) J. Phys. Chem. C, 118, pp. 8079-8089
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., Adsorption and dissociation of molecular hydrogen on orthorhombic β-Mo2C and cubic δ-MoC (001) surfaces (2017) Surf. Sci., 656, pp. 24-32
dc.relation.referencesKresse, G., Hafner, J., Ab initio Molecular Dynamics for Liquid Metals (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, pp. 11169-11186
dc.relation.referencesMonkhorst, H.J., Pack, J.D., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., High-Precision Sampling for Brillouin-Zone Integration in Metals (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621
dc.relation.referencesBlöchl, P.E., Projector Augmented-Wave Method (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesShi, X.-R., Wang, S.-G., Wang, H., Deng, C.-M., Qin, Z., Wang, J., Structure and Stability of β-Mo 2 C Bulk and Surfaces: A Density Functional Theory Study (2009) Surf. Sci., 603, pp. 852-859
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., Catalytic Activity and Product Selectivity Trends for Carbon Dioxide Electroreduction on Transition Metal-Coated Tungsten Carbides (2017) J. Phys. Chem. C, 121, pp. 20306-20314
dc.relation.referencesGrimme, S., Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections (2004) J. Comput. Chem., 25, pp. 1463-1473
dc.relation.referencesBader, R.F.W., (1990) Atoms in Molecules - A Quantum Theory, , Oxford University Press: New York, USA
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density (2006) Comput. Mater. Sci., 36, pp. 254-360
dc.relation.referencesMomma, K., Izumi, F., VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276
dc.relation.referencesMitchell, S.J., Koper, M.T.M., An off-lattice model for Br electrodeposition on Au(100): From DFT to experiment (2004) Surf. Sci., 563, p. 169
dc.relation.referencesKoverga, A.A., Frank, S., Koper, M.T.M., Density Functional Theory Study of Electric Field Effects on CO and OH Adsorption and Co-adsorption on Gold Surfaces (2013) Electrochim. Acta, 101, pp. 244-253
dc.relation.referencesHenkelman, G., Uberuaga, B.P., Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths (2000) J. Chem. Phys., 113, pp. 9901-9904
dc.relation.referencesHenkelman, G., Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points (2000) J. Chem. Phys., 113, pp. 9978-9985
dc.relation.referencesToth, L.E., (1971) Transition Metal Carbides and Nitrides, , Academic: New York, USA
dc.relation.referencesLiu, A.Y., Cohen, M.L., Theoretical Study of the Stability of Cubic WC (1988) Solid State Commun., 67, pp. 907-910
dc.relation.referencesSamsonov, G.V., Vinizkii, I.M., (1976) Handbook of Refractory Compounds, , (In Russian)
dc.relation.referencesMetallurgiya: Moskva, USSR
dc.relation.referencesLiu, A.Y., Wentzcovitch, R.M., Cohen, M.L., Structural and Electronic Properties of WC (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 38, pp. 9483-9489
dc.relation.referencesPoliti, J.R.D.S., Viñes, F., Rodriguez, J.A., Illas, F., Atomic and Electronic Structure of Molybdenum Carbide Phases: Bulk and Low Miller-Index Surfaces (2013) Phys. Chem. Chem. Phys., 15, pp. 12617-12625
dc.relation.referencesMarlo, M., Milman, V., Density-Functional Study of Bulk and Surface Properties of Titanium Nitride Using Different Exchange-Correlation Functionals (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 62, pp. 2899-2907
dc.relation.referencesLi, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Yi, D., Theoretical Study on the Electronic Properties and Stabilities of Low-Index Surfaces of WC Polymorphs (2011) Comput. Mater. Sci., 50, pp. 939-948
dc.relation.referencesLi, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Xu, L., Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds (2010) J. Alloys Compd., 502, pp. 28-37
dc.relation.referencesKitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., Trends in the Chemical Properties of Early Transition Metal Carbide Surfaces: A Density Functional Study (2005) Catal. Today, 105, pp. 66-73
dc.relation.referencesBligaard, T., Nørskov, J.K., Dahl, S., Matthiesen, J., Christensen, C.H., Sehested, J., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis (2004) J. Catal., 224, pp. 206-217
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26
dc.relation.referencesSenanayake, S.D., Ramírez, P.J., Waluyo, I., Kundu, S., Mudiyanselage, K., Liu, Z., Liu, Z., Evans, J., Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal-Oxide Interface and Importance of Ce3+ sites (2016) J. Phys. Chem. C, 120, pp. 1778-1784
dc.relation.referencesRodriguez, J.A., Evans, J., Feria, L., Vidal, A.B., Liu, P., Nakamura, K., Illas, F., CO2 Hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC Catalysts: Production of CO, Methanol, and Methane (2013) J. Catal., 307, pp. 162-169
dc.relation.referencesRibeiro, F., Dalla-Betta, R.A., Boudart, M., Baumgartner, J., Iglesia, E., Reactions of Neopentane, Methylcyclohexane, and 3,3-Dimethylpentane on Tungsten Carbides: The Effect of Surface Oxygen on Reaction Pathways (1991) J. Catal., 130, pp. 86-105
dc.relation.referencesHollak, S.A.W., Gosselink, R.W., Van Es, D.S., Bitter, J.H., Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid (2013) ACS Catal., 3, pp. 2837-2844
dc.relation.referencesGómez-Marín, A.M., Ticianelli, E.A., Analysis of the electrocatalytic activity of α-molybdenum carbide thin porous electrodes toward the hydrogen evolution reaction (2016) Electrochim. Acta, 220, pp. 363-372
dc.relation.referencesGómez-Marín, A.M., Ticianelly, E.A., Effect of Transition Metals in the Hydrogen Evolution Electrocatalytic Activity of Molybdenum Carbide (2017) Appl. Catal., B, 209, pp. 600-610
dc.relation.referencesWeidman, M.C., Esposito, D.V., Hsu, Y.-C., Chen, J.G., Comparison of Electrochemical Stability of Transition Metal Carbides (WC, W 2 C, Mo 2 C) over a Wide pH Range (2012) J. Power Sources, 202, pp. 11-17
dc.relation.referencesWan, C., Regmi, Y.N., Leonard, B.M., Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction (2014) Angew. Chem., Int. Ed., 53, pp. 6407-6410
dc.relation.referencesGajdo, M., Eichler, A., Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: Trends fromab initiocalculations (2004) J. Phys.: Condens. Matter, 16, pp. 1141-1164
dc.relation.referencesYudanov, I.V., Genest, A., Schauermann, S., Freund, H.-J., Rösch, N., Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value (2012) Nano Lett., 12, pp. 2134-2139
dc.relation.referencesRen, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221
dc.relation.referencesLiu, P., Rodriguez, J.A., Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study (2003) Catal. Lett., 91, pp. 247-252
dc.relation.referencesTominaga, H., Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide (2005) J. Phys. Chem. B, 109, pp. 20415-20423
dc.relation.referencesBorodziński, A., Bond, G.C., Selective Hydrogenation of Ethyne in Ethene-Rich Streams on Palladium Catalysts, Part 2: Steady-State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters (2008) Catal. Rev.: Sci. Eng., 50, pp. 379-469
dc.relation.referencesWu, S.-Y., Ho, J.-J., Adsorption, Dissociation, and Hydrogenation of CO 2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations (2012) J. Phys. Chem. C, 116, pp. 13202-13209
dc.relation.referencesRen, J., Huo, C.-F., Wang, J., Li, Y.-W., Jiao, H., Surface Structure and Energetics of Oxygen and CO Adsorption on α-Mo 2 C(0001) (2005) Surf. Sci., 596, pp. 212-221
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem