Mostrar el registro sencillo del ítem

dc.creatorPalomino-Ángel S.
dc.creatorAnaya-Acevedo J.A.
dc.creatorBotero B.A.
dc.date2019
dc.date.accessioned2021-02-05T14:59:08Z
dc.date.available2021-02-05T14:59:08Z
dc.identifier.issn1698095
dc.identifier.urihttp://hdl.handle.net/11407/6073
dc.descriptionThe availability of water is critical in determining the distribution of species by favoring or limiting their development, and leading to the formation of different ecosystems. Thus, analyzing the trends and fluctuations of the precipitation is a key factor to understanding our planet's biodiversity. Different physical conditions exist in northwestern South America that cause extreme climate conditions, especially on the west coast of the continent. This region, known as Biogeographic Chocó has high annual precipitation caused by interactions between the humid currents of the Pacific Ocean and the Andes Mountains. A limited network of hydro-meteorological stations are available in the region to monitor precipitation. Satellite precipitation products can provide valuable information in the absence of field stations, complementing the network of field stations in remote areas, and completing time series for stations that have stopped working. However, remote sensing data must be validated before being used. The goal of this study is thus to evaluate the accuracy of the products of the Tropical Rainfall Measuring Mission 3B42V7 and the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), under very high precipitation conditions, and evaluate their strengths and shortcomings. These programs provide daily-precipitation information with a spatial resolution of 0.25° for the former and 0.1° for the latter. The validation was done by using a time series of daily-precipitation data obtained from 185 hydro-meteorological stations distributed over the Biogeographic Chocó. Different statistic metrics were used in the evaluation and comparison: error metrics (mean difference MD, relative mean difference RMD, and root mean square error RMSE), a correlation metric (Pearson correlation CP), contingency metrics (probability of detection POD, false-alarm ratio FAR, and critical success index CSI). We also evaluate the grid and areal scale. The results show that (i) the 3B42V7 and IMERG daily-precipitation products represent well the spatial and temporal distribution of mean daily precipitation over the Biographic Chocó and both products are accurate for detecting precipitation events. (ii) Mean daily precipitation tends to be overestimated in areas with relative low precipitation and medium-to-high altitude whereas, on the contrary, mean daily precipitation tends to be underestimated in areas with very high precipitation and medium-to-low altitude. (iii) Finally, copious precipitation (i.e., an annual accumulated precipitation over 5000 mm, which is common for over 55% of the study area) strongly affects the accuracy of the satellite products, leading to significant errors in estimates of daily precipitation for some regions. This study constitutes one of the first exhaustive validation of the IMERG daily precipitation product over the Biogeographic Chocó and the results provide important information about the potential for using this product in the study area and over regions with high precipitation. © 2018
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055739547&doi=10.1016%2fj.atmosres.2018.10.012&partnerID=40&md5=4c4b1bba5877a1ec42941d4ebf1d84a1
dc.sourceAtmospheric Research
dc.titleEvaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.publisher.programIngeniería Civilspa
dc.identifier.doi10.1016/j.atmosres.2018.10.012
dc.relation.citationvolume217
dc.relation.citationstartpage37
dc.relation.citationendpage48
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationPalomino-Ángel, S., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, Colombia
dc.affiliationAnaya-Acevedo, J.A., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, Colombia
dc.affiliationBotero, B.A., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30 – 65, Medellín, Colombia
dc.relation.referencesAsong, Z.E., Razavi, S., Wheater, H.S., Wong, J.S., Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: a preliminary Assessment (2017) J. Hydrometeorol., 18 (4), pp. 1033-1050
dc.relation.referencesAudesirk, T., Audesirk, G., Bruce, E., Biología: La vida en la Tierra (2008), PRENTICE HALL INC
dc.relation.referencesBrown, J.E.M., An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions (2006) Remote Sens. Environ., 101 (1), pp. 63-81
dc.relation.referencesChen, F., Li, X., Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China (2016) Remote Sens., 8 (6), pp. 1-18
dc.relation.referencesDinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S.J., Ropelewski, C.F., Validation of satellite rainfall products over East Africa's complex topography (2007) Int. J. Remote Sens., 28 (7), pp. 1503-1526
dc.relation.referencesDinku, T., Ruiz, F., Connor, S.J., Ceccato, P., Validation and intercomparison of satellite rainfall estimates over Colombia (2010) J. Appl. Meteorol. Climatol., 49 (5), pp. 1004-1014
dc.relation.referencesGuo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Stepanian, P.M., Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China (2016) Atmos. Res., 176-177, pp. 121-133
dc.relation.referencesGuzmán, D., Ruíz, J.F., Cadena, M., Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de Análisis de Componentes Principales (ACP) (2014), Bogotá Colombia
dc.relation.referencesHa, K.J., Jeon, E.H., Oh, H.M., Spatial and temporal characteristics of precipitation using an extensive network of ground gauge in the Korean Peninsula (2007) Atmos. Res., 86 (3-4), pp. 330-339
dc.relation.referencesHobouchian, M.P., Salio, P., García Skabar, Y., Vila, D., Garreaud, R., Assessment of satellite precipitation estimates over the slopes of the subtropical Andes (2017) Atmos. Res., 190, pp. 43-54
dc.relation.referencesHsu, K., Gao, X., Sorooshian, S., Gupta, H.V., Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (1997) J. Appl. Meteorol., 36 (9), pp. 1176-1190
dc.relation.referencesHuang, Y., Chen, S., Cao, Q., Hong, Y., Wu, B., Huang, M., Yang, X., Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012 (2014) Water (Switzerland), 6 (1), pp. 32-44
dc.relation.referencesHuffman, G., Adler, R., Curtis, S., Bolvin, D., Nelkin, E., Global rainfall analyses at monthly and 3-hr time scales (2007) Measuring Precipitation from Space: EURAINSAT and the Future, pp. 291-306. , V. Levizzani P. Bauer F.J. Turk Kluwer Academic Pub. B.V. Dordrecht. The Netherlands
dc.relation.referencesHuffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Improving the global precipitation record: GPCP Version 2.1 (2009) Geophys. Res. Lett., 36 (17), pp. 1-5
dc.relation.referencesHuffman, G., Bolvin, D., Nelkin, E., Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation, (June), 1–48. NASA/GSFC code 612, 47 pp (2015), http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf
dc.relation.referencesIDEAM, Portal de solicitud de información (2016), http://www.ideam.gov.co/solicitud-de-informacion, Retrieved from
dc.relation.referencesJaramillo, Á., Chaves, B., Distribución de la precipitación en Colombia analizada mediante conglomeración estadística (2000) Cenicafé, 51 (2), pp. 102-113
dc.relation.referencesJavanmard, S., Yatagai, A., Nodzu, M.I., Bodaghjamali, J., Kawamoto, H., Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran (2010) Adv. Geosci., 25, pp. 119-125
dc.relation.referencesJoyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution (2004) J. Hydrometeorol., 5 (3), pp. 487-503
dc.relation.referencesKumar, T., Patnaik, C., Discrimination of mangrove forests and characterization of adjoining land cover classes using temporal C-band Synthetic Aperture Radar data: a case study of Sundarbans (2013) Int. J. Appl. Earth Obs. Geoinf., 23, pp. 119-131
dc.relation.referencesKummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T., Stocker, E., Nakamura, K., The status of the tropical rainfall measuring mission (TRMM) after two years in orbit (2000) J. Appl. Meteorol., 39 (12), pp. 1965-1982
dc.relation.referencesLi, X.H., Zhang, Q., Xu, C.Y., Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin (2012) J. Hydrol., 426-427, pp. 28-38
dc.relation.referencesLi, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., Yang, K., Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin (2017) Atmos. Res., 183, pp. 212-223
dc.relation.referencesMoazami, S., Golian, S., Kavianpour, M.R., Hong, Y., Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran (2013) Int. J. Remote Sens., 34 (22), pp. 8156-8171
dc.relation.referencesMotohka, T., Nasahara, K., Oguma, H., Tsuchida, S., Applicability of green-red vegetation index for remote sensing of vegetation phenology (2010) Remote Sensing, 2, pp. 2369-2387. , http://www.mdpi.com/2072-4292/2/10/2369?trendmd-shared=0, Retrieved from
dc.relation.referencesMyers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403 (6772), pp. 853-858
dc.relation.referencesNastos, P.T., Kapsomenakis, J., Philandras, K.M., Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece (2016) Atmos. Res., 169, pp. 497-514
dc.relation.referencesPabón-Caicedo, J.D., Eslava-Ramírez, J.A., Gómez-Torres, R.E., Generalidades De La Distribución Espacial Y Temporal De La Temperatura Del Aire Y De La Precipitación En Colombia (2001) Meteorología Colombiana, 4, pp. 47-59
dc.relation.referencesPombo, S., de Oliveira, R.P., Mendes, A., Validation of remote-sensing precipitation products for Angola (2015) Meteorol. Appl., 22 (3), pp. 395-409
dc.relation.referencesPoveda, G., Waylen, P.R., Pulwarty, R.S., Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica (2006) Palaeogeogr. Palaeoclimatol. Palaeoecol., 234 (1), pp. 3-27
dc.relation.referencesPrakash, S., Mitra, A.K., Pai, D.S., Aghakouchak, A., From TRMM to GPM: how well can heavy rainfall be detected from space? (2016) Adv. Water Resour., 88 (December 2014), pp. 1-7
dc.relation.referencesPrakash, S., Mitra, A.K., Aghakouchak, A., Liu, Z., Norouzi, H., Pai, D.S., A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region (2018) J. Hydrol., 556 (February 2014), pp. 865-876
dc.relation.referencesPrat, O.P., Nelson, B.R., Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data (2014) Atmos. Res., 144, pp. 4-20
dc.relation.referencesRangel, J.O., Arellano, P., Clima del Chocó Biogeográfico: Costa Pacífica de Colombia (2004) Diversidad Biótica IV, pp. 39-82. , http://issuu.com/diversidadbiotica/docs/dbivcap3._clima?e=2165212/3337291, Retrieved from
dc.relation.referencesRueda, O., Poveda, G., Variabilidad espacial y temporal del chorro del Chocó y su efecto en la hidroclimatología de la región del Pacífico Colombiano (2006) Meteorología Colombiana, 10, pp. 132-145
dc.relation.referencesSchulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Zelenka, A., Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF) (2008) Atmospheric Chem. Phys. Discus., 8 (3), pp. 8517-8563
dc.relation.referencesSegan, D.B., Murray, K.A., Watson, J.E.M., A global assessment of current and future biodiversity vulnerability to habitat loss-climate change interactions (2016) Global Ecol. Conserv., 5, pp. 12-21
dc.relation.referencesShao, Y., Lunetta, R.S., Wheeler, B., Iiames, J.S., Campbell, J.B., An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data (2016) Remote Sens. Environ., 174, pp. 258-265
dc.relation.referencesSharifi, E., Steinacker, R., Saghafian, B., Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results (2016) Remote Sens., 8 (2)
dc.relation.referencesSuepa, T., Qi, J., Lawawirojwong, S., Messina, J.P., Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia (2016) Environ. Res., 147, pp. 621-629
dc.relation.referencesSutikno, S., Handayani, Y.L., Fauzi, M., Kurnia, A., Hydrologic modelling using TRMM-based rainfall products for flood analysis, 05015(January) (2017), pp. 2-6
dc.relation.referencesTan, J., Petersen, W.A., Kirstetter, P.-E., Tian, Y., Performance of IMERG as a Function of Spatiotemporal Scale (2017) J. Hydrometeorol., 18 (2), pp. 307-319
dc.relation.referencesTang, G., Ma, Y., Long, D., Zhong, L., Hong, Y., Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales (2016) J. Hydrol., 533, pp. 152-167
dc.relation.referencesWatson, J.E.M., Iwamura, T., Butt, N., Mapping vulnerability and conservation adaptation strategies under climate change (2013) Nat. Clim. Chang., 3, pp. 989-994
dc.relation.referencesWorqlul, A.W., Maathuis, B., Adem, A.A., Demissie, S.S., Langan, S., Steenhuis, T.S., Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia (2014) Hydrol. Earth Syst. Sci., 18 (12), pp. 4871-4881
dc.relation.referencesXu, R., Tian, F., Yang, L., Hu, H., Lu, H., Hou, A., Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network (2017) J. Geophys. Res. D Atmospheres, 122 (2), pp. 910-924
dc.relation.referencesZhao, T., Yatagai, A., Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China (2014) Int. J. Climatol., 34 (8), pp. 2749-2762
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem