Mostrar el registro sencillo del ítem

dc.creatorCorrea J.D.
dc.date2019
dc.date.accessioned2021-02-05T14:59:11Z
dc.date.available2021-02-05T14:59:11Z
dc.identifier.issn7496036
dc.identifier.urihttp://hdl.handle.net/11407/6077
dc.descriptionUsing first principles calculation the opto-electronic properties of blue phosphorene nanoribbons doped with carbon, silicon and sulfur atoms are studied. Zigzag and armchair edges configurations and several ribbon widths are considered. The electronic structure is analyzed and the results on band structure is used to study the optical response through the imaginary part of the dielectric function, considering light polarizations both perpendicular and parallel to the nanoribbon growth direction. The results show that carbon, silicon, and sulfur atoms in doped blue phosphorene nanoribbons induce magnetic states which appear as dispersionless energy levels above/under the Fermi level. The observed dispersionless levels in doped blue phosphorene nanoribbons suggest the presence of localized magnetic states. © 2019 Elsevier Ltd
dc.language.isoeng
dc.publisherAcademic Press
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066071183&doi=10.1016%2fj.spmi.2019.05.003&partnerID=40&md5=c138b8ec3759a7025e6a269a406a6de5
dc.sourceSuperlattices and Microstructures
dc.titleFirst principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.spmi.2019.05.003
dc.subject.keywordCalculationseng
dc.subject.keywordCarboneng
dc.subject.keywordDispersionseng
dc.subject.keywordElectronic propertieseng
dc.subject.keywordElectronic structureeng
dc.subject.keywordSulfureng
dc.subject.keywordDielectric functionseng
dc.subject.keywordDispersionlesseng
dc.subject.keywordFirst-principles calculationeng
dc.subject.keywordGrowth directionseng
dc.subject.keywordImaginary partseng
dc.subject.keywordMagnetic stateeng
dc.subject.keywordOptical responseeng
dc.subject.keywordOptoelectronic propertieseng
dc.subject.keywordNanoribbonseng
dc.relation.citationvolume130
dc.relation.citationstartpage401
dc.relation.citationendpage408
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesXu, M., Liang, T., Shi, M., Chen, H., Graphene-like two-dimensional materials (2013) Chem. Rev., 113 (5), pp. 3766-3798
dc.relation.referencesXia, F., Wang, H., Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics (2014) Nature Commun., 5, pp. 1-6
dc.relation.referencesBalendhran, S., Walia, S., Nili, H., Sriram, S., Bhaskaran, M., Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene (2015) Small, 11, pp. 640-652
dc.relation.referencesZhu, C., Du, D., Lin, Y., Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review (2015) 2D Mater., 2, p. 32004
dc.relation.referencesLuo, B., Liu, G., Wang, L., Recent advances in 2D materials for photocatalysis (2016) Nanoscale, 8 (13), pp. 6904-6920
dc.relation.referencesShavanova, K., Bakakina, Y., Burkova, I., Shtepliuk, I., Viter, R., Ubelis, A., Beni, V., Khranovskyy, V., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology (2016) Sensors, 16, p. 223
dc.relation.referencesLi, X.-L., Han, W.-P., Wu, J.-B., Qiao, X.-F., Zhang, J., Tan, P.-H., Layer-number dependent optical properties of 2D materials and their application for thickness determination (2017) Adv. Funct. Mater., 27 (19), p. 1604468
dc.relation.referencesLiu, X., Ma, T., Pinna, N., Zhang, J., Two-dimensional nanostructured materials for gas sensing (2017) Adv. Funct. Mater., 27 (37), p. 1702168
dc.relation.referencesAzadmanjiri, J., Wang, J., Berndt, C.C., 2D layered organicinorganic heterostructures for clean energy applications (2018) J. Mater. Chem. A, 6, pp. 3824-3849
dc.relation.referencesQiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus (2014) Nature Commun., 5, pp. 1-7
dc.relation.referencesLi, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nature Nanotechnol., 9, pp. 372-377
dc.relation.referencesBuscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352
dc.relation.referencesLiu, H., Neal, A.T., Zhu, Z., Tomanek, D., Ye, P.D., Phosphorene: A new 2D material with high carrier mobility (2014) ACS Nano, 8, pp. 4033-4041
dc.relation.referencesHu, W., Yang, J., Defect in phosphorene (2014) J. Phys. Chem. C, 119 (35), pp. 20474-20480
dc.relation.referencesDai, J., Zeng, X.C., Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J. Phys. Chem. Lett., 5 (7), pp. 1289-1293
dc.relation.referencesSa, B., Li, Y.-L., Qi, J., Ahuja, R., Sun, Z., Strain engineering for phosphorene: The potential application as a photocatalyst (2014) J. Phys. Chem. C, 118, pp. 26560-26568
dc.relation.referencesCai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) J. Phys. Chem. C, 119, pp. 3102-3110
dc.relation.referencesZiletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, p. 046801
dc.relation.referencesZhang, H.-P., Hu, W., Du, A., Lu, X., Zhang, Y.-P., Zhou, J., Lin, X., Tang, Y., Doped phosphorene for hydrogen capture: A DFT study (2018) Appl. Surf. Sci., 433, pp. 249-255
dc.relation.referencesZhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Zhang, Q.J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications (2014) Sci. Rep., 4, pp. 4-10
dc.relation.referencesRamasubramaniam, A., Muniz, A.R., Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons (2014) Phys. Rev. B, 90 (8), p. 085424
dc.relation.referencesGuo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers (2014) J. Phys. Chem. C, 118 (25), pp. 14051-14059
dc.relation.referencesZhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett., 112, p. 176802
dc.relation.referencesGuan, J., Zhu, Z., Tománek, D., Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study (2014) Phys. Rev. Lett., 113, p. 46804
dc.relation.referencesZhang, J.L., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Chen, W., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett., 16, pp. 4903-4908
dc.relation.referencesSun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Solid State Commun., 242, pp. 36-40
dc.relation.referencesLi, P., Appelbaum, I., Electrons and holes in phosphorene (2014) Phys. Rev. B, 90 (11), p. 115439
dc.relation.referencesSun, M., Tang, W., Ren, Q., Wang, S.K., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci., 356, pp. 110-114
dc.relation.referencesZheng, H., Yang, H., Wang, H., Du, X., Yan, Y., Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study (2016) J. Magn. Magn. Mater., 408, pp. 121-126
dc.relation.referencesZhou, X., Feng, W., Li, F., Yao, Y., Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene (2017) Nanoscale, 9, pp. 17405-17414
dc.relation.referencesKaewmaraya, T., Srepusharawoot, P., Hussian, T., Amornkitbamrung, V., Electronic properties of h-BCN–blue phosphorene van der Waals heterostructures (2018) Chem. Phys. Chem., 19 (5), pp. 612-618
dc.relation.referencesZhu, S.-C., Yip, C.-T., Peng, S.-J., Wu, K.-M., Yao, K.-L., Mak, C.-L., Lam, C.-H., Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations (2018) Phys. Chem. Chem. Phys., 20 (11), pp. 7635-7642
dc.relation.referencesBai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Solid State Commun., 270, pp. 76-81
dc.relation.referencesHu, T., Hong, J., Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons (2015) J. Appl. Phys., 118 (5), p. 054301
dc.relation.referencesOspina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci., 135
dc.relation.referencesSafari, F., Fathipour, M., Yazdanpanah Goharrizi, A., Tuning electronic, magnetic, and transport properties of blue phosphorene by substitutional doping: a first-principles study (2018) J. Comput. Electron., 17 (2), pp. 499-513
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14 (11), p. 2745
dc.relation.referencesBitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P., Structural relaxation made simple (2006) Phys. Rev. Lett., 97 (17), p. 170201
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem