Mostrar el registro sencillo del ítem

dc.creatorPalacio L.C.
dc.creatorUgarte J.P.
dc.creatorTobón C.
dc.date2019
dc.date.accessioned2021-02-05T14:59:17Z
dc.date.available2021-02-05T14:59:17Z
dc.identifier.issn375497
dc.identifier.urihttp://hdl.handle.net/11407/6086
dc.descriptionAtrial fibrillation is the most prevalent cardiac arrhythmia. Paroxysmal atrial fibrillation (pAF) may occur in episodes lasting from minutes to days. Recent studies suggest that some pAF episodes present a left-to-right dominant frequency gradient caused by ionic current gradients. However, how each ionic current gradient affects the left-to-right dominant frequency gradient during pAF has not been studied. In this work, we use a 3D model of human atria to study how the ionic current gradients affect the dominant frequency gradient during pAF induced by continuous ectopic activity. The role of the specific gradients of acetylcholine-activated potassium current (I KACh ) and inward-rectifier potassium current (I K1 ) on determining the left-to-right dominant frequency gradient was assessed. The main outcome of this study is that either or both of the I KACh or I K1 gradients are necessary to induce a left-to-right dominant frequency gradient during pAF. However, both gradients are necessary to the left atrium maintaining, by itself, the pAF episode. These findings have potentially important implications for the development of atrial-selective therapeutic approaches. © The Author(s) 2019.
dc.language.isoeng
dc.publisherSAGE Publications Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063608650&doi=10.1177%2f0037549719837346&partnerID=40&md5=b79cafb32842cb1361a71288d4bc8286
dc.sourceSimulation
dc.titleIn-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1177/0037549719837346
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationPalacio, L.C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.affiliationUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, Colombia
dc.affiliationTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesKirchhof, P., Benussi, S., Kotecha, D., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) EP Europace, 18 (11), pp. 1609-1678
dc.relation.referencesNattel, S., Burstein, B., Dobrev, D., Atrial remodeling and atrial fibrillation: Mechanisms and implications (2008) Circ Arrhythm Electrophysiol, 1 (1), pp. 62-73
dc.relation.referencesNiwano, S., Wakisaka, Y., Kojima, J., Monitoring the progression of the atrial electrical remodeling in patients with paroxysmal atrial fibrillation (2003) Circ J, 67 (2), pp. 133-138
dc.relation.referencesHaissaguerre, M., Jais, P., Shah, D.C., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339 (10), pp. 659-666
dc.relation.referencesChen, S.A., Hsieh, M.H., Tai, C.T., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: Electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation (1999) Circulation, 100 (18), pp. 1879-1886
dc.relation.referencesArentz, T., Haegeli, L., Sanders, P., High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans (2007) J Cardiovasc Electrophysiol, 18 (1), pp. 31-38
dc.relation.referencesPatterson, E., Jackman, W.M., Beckman, K.J., Spontaneous pulmonary vein firing in man: Relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro (2007) J Cardiovasc Electrophysiol, 18 (10), pp. 1067-1075
dc.relation.referencesTraykov, V.B., Pap, R., Gingl, Z., Role of triggering pulmonary veins in the maintenance of sustained paroxysmal atrial fibrillation (2013) Pacing Clin Electrophysiol, 36 (7), pp. 845-854
dc.relation.referencesJaïs, P., Haïssaguerre, M., Shah, D.C., A focal source of atrial fibrillation treated by discrete radiofrequency ablation (1997) Circulation, 95 (3), pp. 572-576
dc.relation.referencesKumagai, K., Gondo, N., Matsumoto, N., New technique for simultaneous catheter mapping of pulmonary veins for catheter ablation in focal atrial fibrillation (2000) Cardiology, 94 (4), pp. 233-238
dc.relation.referencesPison, L., Tilz, R., Jalife, J., Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: Implications for the choice of the most effective ablation therapy (2016) J Intern Med, 279 (5), pp. 449-456
dc.relation.referencesMandapati, R., Skanes, A., Chen, J., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart (2000) Circulation, 101 (2), pp. 194-199
dc.relation.referencesJalife, J., Berenfeld, O., Mansour, M., Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation (2002) Cardiovasc Res, 54 (2), pp. 204-216
dc.relation.referencesBelhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15 (7), pp. 824-828
dc.relation.referencesSanders, P., Berenfeld, O., Hocini, M., Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans (2005) Circulation, 112 (6), pp. 789-797
dc.relation.referencesYamazaki, M., Filgueiras-Rama, D., Berenfeld, O., Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation (2012) Prog Biophys Mol Biol, 110 (2-3), pp. 269-277
dc.relation.referencesBingen, B.O., Engels, M.C., Schalij, M.J., Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes (2014) Cardiovasc Res, 104 (1), pp. 194-205
dc.relation.referencesCliment, A.M., Guillem, M.S., Fuentes, L., Role of atrial tissue remodeling on rotor dynamics: An in vitro study (2015) Am J Physiol Circ Physiol, 309 (11), pp. H1964-H1973
dc.relation.referencesVarela, M., Colman, M.A., Hancox, J.C., Atrial heterogeneity generates re-entrant substrate during atrial fibrillation and anti-arrhythmic drug action: Mechanistic insights from canine atrial models (2016) PLoS Comput Biol, 12 (12), p. e1005245
dc.relation.referencesLim, H.S., Hocini, M., Dubois, R., Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation (2017) J Am Coll Cardiol, 69 (10), pp. 1257-1269
dc.relation.referencesMiller, J.M., Kalra, V., Das, M.K., Clinical benefit of ablating localized sources for human atrial fibrillation: The Indiana University FIRM registry (2017) J Am Coll Cardiol, 69 (10), pp. 1247-1256
dc.relation.referencesHasebe, H., Yoshida, K., Iida, M., Right-to-left frequency gradient during atrial fibrillation initiated by right atrial ectopies and its augmentation by adenosine triphosphate: Implications of right atrial fibrillation (2016) Heart Rhythm, 13 (2), pp. 354-363
dc.relation.referencesAtienza, F., Almendral, J., Jalife, J., Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm (2009) Heart Rhythm, 6 (1), pp. 33-40
dc.relation.referencesZhou, Z., Jin, Q., Chen, L.Y., Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation (2016) IEEE Trans Biomed Eng, 63 (6), pp. 1333-1340
dc.relation.referencesCervigón, R., Castells, F., Gómez-Pulido, J., Granger causality and Jensen–Shannon divergence to determine dominant atrial area in atrial fibrillation (2018) Entropy, 20 (1), p. 57
dc.relation.referencesCsepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends Cardiovasc Med, 27 (1), pp. 1-11
dc.relation.referencesVoigt, N., Trausch, A., Knaut, M., Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation (2010) Circ Arrhythm Electrophysiol, 3 (5), pp. 472-480
dc.relation.referencesSamie, F.H., Berenfeld, O., Anumonwo, J., Rectification of the background potassium current: A determinant of rotor dynamics in ventricular fibrillation (2001) Circ Res, 89 (12), pp. 1216-1223
dc.relation.referencesSekar, R.B., Kizana, E., Cho, H.C., I K1 heterogeneity affects genesis and stability of spiral waves in cardiac myocyte monolayers (2009) Circ Res, 104 (3), pp. 355-364
dc.relation.referencesBerenfeld, O., The major role of I K1 in mechanisms of rotor drift in the atria: A computational study (2016) Clin Med Insights Cardiol, 10 (1), pp. 71-79
dc.relation.referencesBerenfeld, O., Jalife, J., Mechanisms of atrial fibrillation: Rotors, ionic determinants, and excitation frequency (2014) Cardiol Clin, 32 (4), pp. 495-506
dc.relation.referencesEhrlich, J.R., Inward rectifier potassium currents as a target for atrial fibrillation therapy (2008) J Cardiovasc Pharmacol, 52 (2), pp. 129-135
dc.relation.referencesSarmast, F., Kolli, A., Zaitsev, A., Cholinergic atrial fibrillation: I K,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics (2003) Cardiovasc Res, 59 (4), pp. 863-873
dc.relation.referencesMansour, M., Mandapati, R., Berenfeld, O., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103 (21), pp. 2631-2636
dc.relation.referencesTobón, C., Ruiz-Villa, C.A., Heidenreich, E., A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship (2013) PLoS One, 8 (2), p. e50883
dc.relation.referencesSaiz, J., Tobón, C., Supraventricular arrhythmias in a realistic 3D model of the human atria (2013) Cardiac electrophysiology: From cell to bedside, pp. 351-359. , Zipes D.P., Jalife J., (eds), 6th ed., Philadelphia, PA, USA, Elsevier Saunders, In:, (eds
dc.relation.referencesSanchez-Quintana, D., Anderson, R., Cabrera, J., The terminal crest: Morphological features relevant to electrophysiology (2002) Heart, 88 (4), pp. 406-411
dc.relation.referencesCabrera, J.A., Ho, S.Y., Climent, V., The architecture of the left lateral atrial wall: A particular anatomic region with implications for ablation of atrial fibrillation (2008) Eur Heart J, 29 (3), pp. 356-362
dc.relation.referencesHo, S.Y., Sánchez-Quintana, D., The importance of atrial structure and fibers (2009) Clin Anat, 22 (1), pp. 52-63
dc.relation.referencesCourtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am J Physiol, 275 (1), pp. H301-H321
dc.relation.referencesKneller, J., Zou, R., Vigmond, E.J., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ Res, 90 (9), pp. E73-E87
dc.relation.referencesFeng, J., Yue, L., Wang, Z., Ionic mechanisms of regional action potential heterogeneity in the canine right atrium (1998) Circ Res, 83 (5), pp. 541-551
dc.relation.referencesCha, T.J., Ehrlich, J.R., Zhang, L., Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: Comparison with left atrium and potential relation to arrhythmogenesis (2005) Circulation, 111 (6), pp. 728-735
dc.relation.referencesLi, D., Zhang, L., Kneller, J., Potential ionic mechanism for repolarization differences between canine right and left atrium (2001) Circ Res, 88 (11), pp. 1168-1175
dc.relation.referencesHeidenreich, E.A., Ferrero, J.M., Doblaré, M., Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann Biomed Eng, 38 (7), pp. 2331-2345
dc.relation.referencesBoineau, J.P., Canavan, T.E., Schuessler, R.B., Demonstration of a widely distributed atrial pacemaker complex in the human heart (1988) Circulation, 77 (6), pp. 1221-1237
dc.relation.referencesShah, D.C., Haissaguerre, M., Jais, P., High-resolution mapping of tachycardia originating from the superior vena cava: Evidence of electrical heterogeneity, slow conduction, and possible circus movement reentry (2002) J Cardiovasc Electrophysiol, 13 (4), pp. 388-392
dc.relation.referencesUgarte, J.P., Orozco-Duque, A., Tobón, C., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS One, 9 (12), p. e114577
dc.relation.referencesSchuessler, R.B., Grayson, T.M., Bromberg, B.I., Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium (1992) Circ Res, 71 (5), pp. 1254-1267
dc.relation.referencesVeenhuyzen, G.D., Simpson, C.S., Abdollah, H., Atrial fibrillation (2004) CMAJ, 171 (7), pp. 755-760
dc.relation.referencesTsai, C.F., Tai, C.T., Hsieh, M.H., Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: Electrophysiological characteristics and results of radiofrequency ablation (2000) Circulation, 102, pp. 67-74
dc.relation.referencesBerenfeld, O., Zaitsev, A.V., Mironov, S.F., Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium (2002) Circ Res, 90 (11), pp. 1173-1180
dc.relation.referencesBerenfeld, O., Ionic and substrate mechanism of atrial fibrillation: Rotors and the exitation frequency approach (2010) Arch Cardiol Mex, 80 (4), pp. 301-314
dc.relation.referencesAtienza, F., Almendral, J., Moreno, J., Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: Evidence for a reentrant mechanism (2006) Circulation, 114 (23), pp. 2434-2442
dc.relation.referencesLazar, S., Dixit, S., Marchlinski, F.E., Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans (2004) Circulation, 110 (20), pp. 3181-3186
dc.relation.referencesEhrlich, J.R., Biliczki, P., Hohnloser, S.H., Atrial-selective approaches for the treatment of atrial fibrillation (2008) J Am Coll Cardiol, 51 (8), pp. 787-792
dc.relation.referencesNadimi, A.E., Ebrahimipour, S.Y., Afshar, E.G., Nano-scale drug delivery systems for antiarrhythmic agents (2018) Eur J Med Chem, 157, pp. 1153-1163
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem