REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Evaluation of Grouting Scenarios for Reducing Water Inflows from Major Faults in Underground Excavations

Thumbnail
Share this
Author
Domingue C.
Lemieux J.-M.
Grenon M.
Molson J.
Therrien R.
Lajoie P.-L.
Blessent D.
TY - GEN T1 - Numerical Evaluation of Grouting Scenarios for Reducing Water Inflows from Major Faults in Underground Excavations AU - Domingue C. AU - Lemieux J.-M. AU - Grenon M. AU - Molson J. AU - Therrien R. AU - Lajoie P.-L. AU - Blessent D. UR - http://hdl.handle.net/11407/6097 PB - Springer Verlag AB - Water inflows through fracture networks are a major economic and safety issue in underground mines. Although pre-grouting of pilot holes during mine development efficiently reduces water inflows into mine excavations, current design methods remain empirical. We used a finite-element numerical model to simulate groundwater inflow into a stope with the objective of finding the best configuration to increase pre-grouting efficiency for sealing faults while decreasing the associated costs. We designed simulations to test various grout injection scenarios for two different major fault locations around the stope, based on the site characteristics of the Éléonore mine (Québec, Canada). Sensitivity analyses show that, for a fault located above the stope, grouting the zone between the fault and the stope reduces inflow more than directly grouting the fault. Also, in the case of a fault intersecting a stope, the simulations suggest that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. ER - @misc{11407_6097, author = {Domingue C. and Lemieux J.-M. and Grenon M. and Molson J. and Therrien R. and Lajoie P.-L. and Blessent D.}, title = {Numerical Evaluation of Grouting Scenarios for Reducing Water Inflows from Major Faults in Underground Excavations}, year = {}, abstract = {Water inflows through fracture networks are a major economic and safety issue in underground mines. Although pre-grouting of pilot holes during mine development efficiently reduces water inflows into mine excavations, current design methods remain empirical. We used a finite-element numerical model to simulate groundwater inflow into a stope with the objective of finding the best configuration to increase pre-grouting efficiency for sealing faults while decreasing the associated costs. We designed simulations to test various grout injection scenarios for two different major fault locations around the stope, based on the site characteristics of the Éléonore mine (Québec, Canada). Sensitivity analyses show that, for a fault located above the stope, grouting the zone between the fault and the stope reduces inflow more than directly grouting the fault. Also, in the case of a fault intersecting a stope, the simulations suggest that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.}, url = {http://hdl.handle.net/11407/6097} }RT Generic T1 Numerical Evaluation of Grouting Scenarios for Reducing Water Inflows from Major Faults in Underground Excavations A1 Domingue C. A1 Lemieux J.-M. A1 Grenon M. A1 Molson J. A1 Therrien R. A1 Lajoie P.-L. A1 Blessent D. LK http://hdl.handle.net/11407/6097 PB Springer Verlag AB Water inflows through fracture networks are a major economic and safety issue in underground mines. Although pre-grouting of pilot holes during mine development efficiently reduces water inflows into mine excavations, current design methods remain empirical. We used a finite-element numerical model to simulate groundwater inflow into a stope with the objective of finding the best configuration to increase pre-grouting efficiency for sealing faults while decreasing the associated costs. We designed simulations to test various grout injection scenarios for two different major fault locations around the stope, based on the site characteristics of the Éléonore mine (Québec, Canada). Sensitivity analyses show that, for a fault located above the stope, grouting the zone between the fault and the stope reduces inflow more than directly grouting the fault. Also, in the case of a fault intersecting a stope, the simulations suggest that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Water inflows through fracture networks are a major economic and safety issue in underground mines. Although pre-grouting of pilot holes during mine development efficiently reduces water inflows into mine excavations, current design methods remain empirical. We used a finite-element numerical model to simulate groundwater inflow into a stope with the objective of finding the best configuration to increase pre-grouting efficiency for sealing faults while decreasing the associated costs. We designed simulations to test various grout injection scenarios for two different major fault locations around the stope, based on the site characteristics of the Éléonore mine (Québec, Canada). Sensitivity analyses show that, for a fault located above the stope, grouting the zone between the fault and the stope reduces inflow more than directly grouting the fault. Also, in the case of a fault intersecting a stope, the simulations suggest that the fault itself should be grouted as widely as possible, instead of sealing only the immediate surroundings of the stope. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
URI
http://hdl.handle.net/11407/6097
Collections
  • Indexados Scopus [1337]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com