REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Optimal Robust Time-Delay Robot Dynamics

Thumbnail
Compartir este ítem
Autor
Azhmyakov V.
Trujillo L.A.G.
Vargas M.G.F.

Citación

       
TY - GEN T1 - On the Optimal Robust Time-Delay Robot Dynamics AU - Azhmyakov V. AU - Trujillo L.A.G. AU - Vargas M.G.F. UR - http://hdl.handle.net/11407/6151 PB - Institute of Electrical and Electronics Engineers Inc. AB - Our paper is devoted to a specific class of Optimal Control Problems (OCPs) in theoretical mechanics. We consider a minimax-Type optimal control processes governed by dynamic systems with randomly varying time delays. In particular we deals with the minimax-Type OCPs associated with a family of delayed Lagrange differential equations for the robot dynamics. The mathematical abstractions under consideration provide an adequate approach to many real-world robotic systems. Moreover, the proposed minimax dynamic optimization approach has a fundamental interpretation as a system robustness with respect to the unavoidable delays in robot control. The obtained convex structure of a linearized robot dynamics makes it possible to reduce the originally given delayed OCP to an auxiliary convex program in a suitable Euclidean space. The equivalent transformation we propose involves the wide range of effective algorithms for an effective computational treatment of the resulting convex OCP. We finally propose a concrete gradient based computational approach for the optimal control design of the controlled Lagrange-Type robot dynamics. © 2018 IEEE. ER - @misc{11407_6151, author = {Azhmyakov V. and Trujillo L.A.G. and Vargas M.G.F.}, title = {On the Optimal Robust Time-Delay Robot Dynamics}, year = {}, abstract = {Our paper is devoted to a specific class of Optimal Control Problems (OCPs) in theoretical mechanics. We consider a minimax-Type optimal control processes governed by dynamic systems with randomly varying time delays. In particular we deals with the minimax-Type OCPs associated with a family of delayed Lagrange differential equations for the robot dynamics. The mathematical abstractions under consideration provide an adequate approach to many real-world robotic systems. Moreover, the proposed minimax dynamic optimization approach has a fundamental interpretation as a system robustness with respect to the unavoidable delays in robot control. The obtained convex structure of a linearized robot dynamics makes it possible to reduce the originally given delayed OCP to an auxiliary convex program in a suitable Euclidean space. The equivalent transformation we propose involves the wide range of effective algorithms for an effective computational treatment of the resulting convex OCP. We finally propose a concrete gradient based computational approach for the optimal control design of the controlled Lagrange-Type robot dynamics. © 2018 IEEE.}, url = {http://hdl.handle.net/11407/6151} }RT Generic T1 On the Optimal Robust Time-Delay Robot Dynamics A1 Azhmyakov V. A1 Trujillo L.A.G. A1 Vargas M.G.F. LK http://hdl.handle.net/11407/6151 PB Institute of Electrical and Electronics Engineers Inc. AB Our paper is devoted to a specific class of Optimal Control Problems (OCPs) in theoretical mechanics. We consider a minimax-Type optimal control processes governed by dynamic systems with randomly varying time delays. In particular we deals with the minimax-Type OCPs associated with a family of delayed Lagrange differential equations for the robot dynamics. The mathematical abstractions under consideration provide an adequate approach to many real-world robotic systems. Moreover, the proposed minimax dynamic optimization approach has a fundamental interpretation as a system robustness with respect to the unavoidable delays in robot control. The obtained convex structure of a linearized robot dynamics makes it possible to reduce the originally given delayed OCP to an auxiliary convex program in a suitable Euclidean space. The equivalent transformation we propose involves the wide range of effective algorithms for an effective computational treatment of the resulting convex OCP. We finally propose a concrete gradient based computational approach for the optimal control design of the controlled Lagrange-Type robot dynamics. © 2018 IEEE. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
Our paper is devoted to a specific class of Optimal Control Problems (OCPs) in theoretical mechanics. We consider a minimax-Type optimal control processes governed by dynamic systems with randomly varying time delays. In particular we deals with the minimax-Type OCPs associated with a family of delayed Lagrange differential equations for the robot dynamics. The mathematical abstractions under consideration provide an adequate approach to many real-world robotic systems. Moreover, the proposed minimax dynamic optimization approach has a fundamental interpretation as a system robustness with respect to the unavoidable delays in robot control. The obtained convex structure of a linearized robot dynamics makes it possible to reduce the originally given delayed OCP to an auxiliary convex program in a suitable Euclidean space. The equivalent transformation we propose involves the wide range of effective algorithms for an effective computational treatment of the resulting convex OCP. We finally propose a concrete gradient based computational approach for the optimal control design of the controlled Lagrange-Type robot dynamics. © 2018 IEEE.
URI
http://hdl.handle.net/11407/6151
Colecciones
  • Indexados Scopus [2005]
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com