Mostrar el registro sencillo del ítem

dc.creatorAguas Y.
dc.creatorHincapié M.
dc.creatorSánchez C.
dc.creatorBotero L.
dc.creatorFernández-Ibañez P.
dc.date2018
dc.date.accessioned2021-02-05T15:00:13Z
dc.date.available2021-02-05T15:00:13Z
dc.identifier.issn22279717
dc.identifier.urihttp://hdl.handle.net/11407/6157
dc.descriptionThe antibacterial photocatalytic activity of TiO2 supported over two types of substrates, borosilicate glass tubes (TiO2/SiO2-borosilicate glass tubes (BGT)) and low-density polyethylene pellets (TiO2-LDPE pellets), which were placed in a compound parabolic collectors (CPC) reactor, was evaluated against Enterobacter cloacae and Escherichia coli under sunlight. Three solar photocatalytic systems were assessed, suspended TiO2, TiO2/SiO2-BGT and TiO2-LDPE pellets, at three initial bacterial concentrations, 1 × 105; 1 × 103; 1 × 101 CFU/mL of E. coli and total bacteria (E. cloacae and E. coli). The solar photo-inactivation of E. coli was achieved after two hours with 7.2 kJ/L of UV-A, while total bacteria required four hours and 16.5 kJ/L of UV-A. Inactivation order of E. coli was determined, as follows, suspended TiO2/sunlight (50 mg/L) > TiO2-LDPE pellets/sunlight (52 mg/L) > TiO2/SiO2-BGT/sunlight (59 mg/L), the best E. coli. inactivation rate was obtained with TiO2-LDPE pellets/sunlight, within 4.5 kJ/L and 90 min. The highest total bacteria inactivation rate was found for TiO2/sunlight (50 mg/L) and TiO2-LDPE pellets/sunlight (52 mg/L), within 11.2 kJ/L and 180 min. TiO2 deposited over LDPE pellets was the most effective material, which can be successfully used for water disinfection applications. Bacterial regrowth was assessed 24 h after all photocatalytic treatments, none of those microorganisms showed any recovery above the detection limit (2 CFU/mL). © 2018 by the authors.
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053816693&doi=10.3390%2fpr6090137&partnerID=40&md5=aa1a96e7a7fba6e2bb9457b5b75b163f
dc.sourceProcesses
dc.titlePhotocatalytic inactivation of Enterobacter cloacae and Escherichia coli using titanium dioxide supported on two substrates
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.3390/pr6090137
dc.relation.citationvolume6
dc.relation.citationissue9
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationAguas, Y., School of Engineering, Universidad de Sucre, Sincelejo, 700001, Colombia, School of Engineering, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationHincapié, M., School of Engineering, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationSánchez, C., School of Engineering, Universidad de Antioquia, Medellín, 050010, Colombia
dc.affiliationBotero, L., School of Engineering, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFernández-Ibañez, P., Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, BT37 0QB, United Kingdom
dc.relation.referencesLanao, M., Ormad, M.P., Mosteo, R., Ovelleiro, J.L., Inactivation of Enterococcus sp. by photolysis and TiO2 photocatalysis with H2O2 in natural water (2012) Sol. Energy, 86, pp. 619-625
dc.relation.referencesRincón, A.-G., Pulgarin, C., Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale (2007) Catal. Today, 122, pp. 128-136
dc.relation.referencesAndreozzi, R., Caprio, V., Insola, A., Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery (1999) Catal. Today, 53, pp. 51-59
dc.relation.referencesBooshehri, A.Y., Polo-Lopez, M.I., Castro-Alférez, M., Hea, P., Xu, R., Rong, W., Malato, S., Férnandez-Ibañez, P., Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents (2017) Catal. Today, 281, pp. 124-134
dc.relation.referencesCruz-Ortiz, B.R., Hamilton, J.W.J., Pablos, C., Díaz-Jiménez, L., Cortés-Hernández, P.F.-I.D., Sharma, P.K., Castro-Alférez, M., Byrne, J.A., Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation (2017) Chem. Eng. J, 316, pp. 179-186
dc.relation.referencesCastro-Alférez, M., Polo-López, M.I., Fernández-Ibáñez, P., Intracellular mechanisms of solar water disinfection (2016) Sci. Rep, 6
dc.relation.referencesMalato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends (2009) Catal. Today, 147, pp. 1-59
dc.relation.referencesMills, A., Le Hunte, S., An overview of semiconductor photocatalysis (1997) J. Photochem. Photobiol. A Chem, 108, pp. 1-35
dc.relation.referencesHuang, Z., Maness, P.-C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., Jacoby, W.A., Bactericidal mode of titanium dioxide photocatalysis (2000) J. Photochem. Photobiol. A Chem, 130, pp. 163-170
dc.relation.referencesGelover, S., Gómez, L.A., Reyes, K., Teresa Leal, M., A practical demonstration of water disinfection using TiO2 films and sunlight (2006) Water Res, 40, pp. 3274-3280
dc.relation.referencesGelover, S., Mondragón, P., Jiménez, A., Titanium dioxide sol-gel deposited over glass and its application as a photocatalyst for water decontamination (2004) J. Photochem. Photobiol. A Chem, 16, pp. 241-246
dc.relation.referencesPozzo, R.L., Baltanás, M.A., Cassano, A.E., Supported titanium oxide as photocatalyst in water decontamination: State of the art (1997) Catal. Today, 39, pp. 219-231
dc.relation.referencesPortela, R., Sánchez, B., Coronado, J.M., Candal, R., Suárez, S., Selection of TiO2-support: UV-transparent alternatives and long-term use limitations for H2S removal (2007) Catal. Today, 129, pp. 223-230
dc.relation.referencesTurki, A., Kochkar, H., García-Fernández, I., Polo-López, M.I., Ghorbel, A., Guillard, C., Berhault, G., Fernández-Ibáñez, P., Solar photocatalytic inactivation of Fusarium Solani over TiO2 nanomaterials with controlled morphology-Formic acid effect (2013) Catal. Today, 209, pp. 147-152
dc.relation.referencesMejía, M.I., Marín, J.M., Restrepo, G., Rios, L.A., Pulgarín, C., Kiwi, J., Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol (2010) Appl. Catal. B Environ, 94, pp. 166-172
dc.relation.referencesGrieken, R.V., Marugán, J., Sordo, C., Pablos, C., Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors (2009) Catal. Today, 144, pp. 48-54
dc.relation.referencesAlrousan, D.M.A., Polo-López, M.I., Dunlop, P.S.M., Fernández-Ibáñez, P., Byrne, J.A., Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors (2012) Appl. Catal. B Environ, 128, pp. 126-134
dc.relation.referencesMallak, M., Bockmeyer, M., Löbmann, P., Liquid phase deposition of TiO2 on glass: Systematic comparison to films prepared by sol-gel processing (2007) Thin Solid Films, 515, pp. 8072-8077
dc.relation.referencesSong, M.Y., Park, Y.K., Jurng, J., Direct coating of V2O5/TiO2 nanoparticles onto glass beads by chemical vapor deposition (2012) Power Technol, 231, pp. 135-140
dc.relation.referencesVelásquez, J., Valencia, S., Rios, L., Restrepo, G., Marín, J., Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method (2012) Chem. Eng. J, 203, pp. 398-405
dc.relation.referencesGiovannetti, R., D'Amato, C.A., Zannotti, M., Rommozzi, E., Gunnella, R., Miniucci, M., Di Cicco, A., Visible light photoactivity of polypropylene coated Nano-TiO2 for dyes degradation in water (2015) Sci. Rep, 5
dc.relation.referencesRubio, D., Casanueva, J.F., Nebot, E., Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/ TiO2) as seawater disinfection technology (2013) J. Photochem. Photobiol. A Chem, 271, pp. 16-23
dc.relation.referencesYu, H., Song, L., Hao, Y., Lu, N., Quan, X., Chen, S., Zhang, Y., Feng, Y., Fabrication of pilot-scale photocatalytic disinfection device by installing TiO2 coated helical support into UV annular reactor for strengthening sterilization (2016) Chem. Eng. J, 283, pp. 1506-1513
dc.relation.referencesRatova, M., Mills, A., Antibacterial titania-based photocatalytic extruded plastic films (2015) J. Photochem. Photobiol. A Chem, 299, pp. 159-165
dc.relation.referencesRtimi, S., Sanjines, R., Andrzejczuk, M., Pulgarin, C., Kulik, A., Kiwi, J., Innovative transparent non-scattering TiO2 bactericide thin films inducing increased E. coli cell wall fluidity (2014) Surf. Coat. Technol, 254, pp. 333-343
dc.relation.referencesYemmireddy, V.K., Hung, Y.C., Photocatalytic TiO2 coating of plastic cutting board to prevent microbial cross-contamination (2017) Food Control, 77, pp. 88-95
dc.relation.referencesYañez, D., Guerrero, S., Lieberwirth, I., Ulloa, M.T., Gomez, T., Rabagliati, F.M., Zapata, P.A., Photocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites (2015) Appl. Catal. A Gen, 489, pp. 255-261
dc.relation.referencesBahloul, W., Mélis, F., Bounor-Legaré, V., Cassagnau, P., Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol-gel method (2012) Mater. Chem. Phys, 134, pp. 399-406
dc.relation.referencesMarín, J.M., Fidelgranda, C., Galeano, L., Rios, L.A., Restrepo, G., Impregnación de TiO2 sobre borosilicato por el método sol-gel usando inmersión a velocidad controlada (2007) Sci. Tech, 2, pp. 441-446
dc.relation.referencesGarcía-Fernández, I., Polo-López, M.I., Oller, I., Fernández-Ibáñez, P., Bacteria and fungi inactivation using Fe3+/sunlight, H2O2sunlight and near neutral photo-Fenton: A comparative study (2012) Appl. Catal. B Environ, 121-122, pp. 20-29
dc.relation.referencesLei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., Yang, M., Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants (2012) J. Hazard. Mater, 227-228, pp. 185-194
dc.relation.referencesSafajou, H., Khojasteh, H., Salavati-Niasari, M., Mortazavi-Derazkola, S., Enhanced photocatalytic degradation of dyes over graphene/Pd/ TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles (2017) J. Colloid Interface Sci, 498, pp. 423-432
dc.relation.referencesLeón, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., Orihuela, P.A., FTIR and raman characterization of TiO2 nanoparticles coated with Polyethylene Glycol as carrier for 2-Methoxyestradiol (2017) Appl. Sci, 7, p. 49
dc.relation.referencesFischer, E.W., Effect of annealing and temperature on the morphological structure of polymers (1972) Pure Appl. Chem, 31, pp. 113-132
dc.relation.referencesMatsuzawa, S., Maneerat, C., Hayata, Y., Hirakawa, T., Negishi, N., Sano, T., Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase (2008) Appl. Catal. B Environ, 83, pp. 39-45
dc.relation.referencesSordo, C., Van Grieken, R., Marugán, J., Fernández-Ibáñez, P., Solar photocatalytic disinfection with immobilised TiO2 at pilot-plant scale (2010) Water Sci. Technol, 61, p. 507
dc.relation.referencesHincapié, M., Balaguera, A., Botero, L., Sánchez, C., Restrepo, G., Marín, J., Purificación del agua por fotocatálisis. Even. X Jornadas Investig. Univ. Medellín INNOVACIóN Y Transf (2014) Conoc. EN Ing, pp. 75-92. , Sello Editorial Universidad de MedellSín: Medellín, Colombia
dc.relation.referencesMarugán, J., Grieken, R.V., Sordo, C., Cruz, C., Kinetics of the photocatalytic disinfection of Escherichia coli suspensions (2008) Appl. Catal. B Environ, 82, pp. 27-36
dc.relation.referencesHelali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S., Guillard, C., Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst (2014) J. Photochem. Photobiol. A Chem, 276, pp. 31-40
dc.relation.referencesRincón, A.G., Pulgarin, C., Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time (2004) Appl. Catal. B Environ, 49, pp. 99-112
dc.relation.referencesCraik, S.A., Weldon, D., Finch, G.R., Bolton, J.R., Belosevic, M., Inactivation of cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation (2001) Water Res, 35, pp. 1387-1398
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem