Show simple item record

dc.contributor.advisorAzhmyakov, Vadim
dc.contributor.advisorPickl, Stefan
dc.contributor.authorFernández Gutiérrez, Juan Pablo
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date.accessioned2021-04-20T18:35:51Z
dc.date.available2021-04-20T18:35:51Z
dc.date.created2019-09-04
dc.identifier.otherCD-ROM 9019 2019
dc.identifier.urihttp://hdl.handle.net/11407/6338
dc.descriptionEsta tesis basada en artículos analiza un nuevo enfoque computacional para el problema de localización de cobertura máxima (MCLP, sigla en inglés). Consideramos una formulación de tipo difuso del MCLP genérico y desarrollamos los aspectos teóricos y numéricos necesarios del Método de Separación (SM) propuesto. Una estructura específica del MCLP originalmente dado hace posible reducirlo a dos problemas auxiliares de tipo mochila (Knapsack). La separación equivalente que proponemos reduce esencialmente la complejidad de los algoritmos resultantes. Este algoritmo también incorpora una técnica de relajación convencional y el método de escalarización aplicado a un problema auxiliar de optimización multiobjetivo. La metodología de solución propuesta se aplica a continuación a la optimización de la cadena de suministro en presencia de información incompleta. Estudiamos dos ejemplos ilustrativos y realizamos un análisis riguroso de los resultados obtenidos.
dc.description.abstractThis Ph.D. article-based thesis discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speci_c structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results.
dc.format.extentp. 1-79
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.titleA maximal covering location problem based optimization of complex processes : a novel computational approach
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programDoctorado en Modelación y Computación Científica
dc.subject.lembAlgoritmos (Computadores)
dc.subject.lembComplejidad computacional
dc.subject.lembModelado
dc.subject.lembOptimización matemática
dc.relation.citationstartpage1
dc.relation.citationendpage79
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMedellín
dc.relation.references[1] G. Alexandris, I. Giannikos, A new model for maximal coverage exploiting GIS capabilities, European Journal of Operational Research, vol. 202(2), 2010, pp. 328 - 338.spa
dc.relation.references[2] D. Romero, F. Vernadat, Enterprise information systems state of the art: Past, present and future trends. Computer in Industry, vol. 79, June 2016, pp. 3 - 13.spa
dc.relation.references[3] H. Aytug, C. Saydam, Solving large-scale maximum expected covering location problems by genetic algorithms: a comparative study, European Journal of Operational Research, vol. 141(3), 2002, pp. 480 - 494.spa
dc.relation.references[4] V. Azhmyakov and W. Schmidt, Approximations of relaxed optimal control problems, Journal of Optimization Theory and Applications, vol. 130, 2006, pp. 61 - 77.spa
dc.relation.references[5] V. Azhmyakov, M. Basin, C. Reincke-Collon, Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs, in: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014, pp. 6976 - 6981.spa
dc.relation.references[6] V. Azhmyakov, J. Cabrera, A. Poznyak, Optimal _xed - levels control for non - linear systems with quadratic cost functionals, Optimal Control Applications and Methods, to appear in 2016.spa
dc.relation.references[7] V. Azhmyakov, R. Juarez, On the projected gradient method for switched - mode systems optimization, in: Proceedings of the 5th IFAC Conference on Analysis and Design of Hybrid Systems, Atlanta, USA, 2015.spa
dc.relation.references[8] V. Batanovic, D. Petrovic, R. Petrovic, Fuzzy logic based algorithms for maximum covering location problems, Information Sciences, vol. 179(12), 2009, pp. 120 - 129.spa
dc.relation.references[9] O. Berman, J. Kalcsics, D. Krass, S. Nickel, The ordered gradual covering location problem on a network, Discrete Applied Mathematics, vol. 157(18), 2009, pp. 3689 - 3707.spa
dc.relation.references[10] O. Berman, J. Wang, The minmax regret gradual covering location problem on a network with incomplete information of demand weights, European Journal of Operational Research, vol. 208(3), 2011, pp. 233 - 238.spa
dc.relation.references[11] R.D. Galvao, L.G. Acosta Espejo, B. Bo_ey, A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem, European Journal of Operational Research, vol. 124(2), 2000, pp. 377 - 389.spa
dc.relation.references[12] M.S. Canbolat, M. von Massow, Planar maximal covering with ellipses, Computers and Industrial Engineering, vol. 57(1), 2009, pp. 201 - 208.spa
dc.relation.references[13] R.L. Church, C.S ReVelle, The maximal covering location problem, in Papers of the Regional Science Association, vol. 32, 1974, pp. 101 - 118.spa
dc.relation.references[14] G. Ji, S. Han, A strategy analysis in dual-channel supply chain based one_ort levels, in: Proceedings of the 1th International Conference on Service Systems and Service Management, Beijing, China, 2014, pp. 2161-1890.spa
dc.relation.references[15] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problem, Springer, Berlin, 2004.spa
dc.relation.references[16] A. Giret, E. Garcia, V. Botti An engineering framework for Service-Oriented Intelligent Manufacturing Systems, Computers in Industry, vol. 81, September 2016, pp. 116 - 127.spa
dc.relation.references[17] G.C. Moore, C.S. ReVelle, The hierarchical service location problem, Management Science, vol. 28, 1982, pp. 775 - 780.spa
dc.relation.references[18] B. Neef, M. Plank, G. Posselt, S. Thiede, C. Herrmann, Demandoriented Selection and Combination of Industrial Bus Systems for Advanced Energy Management Purposes, Pocedia CIRP, vol. 48, 2016, pp. 224 - 229.spa
dc.relation.references[19] C. ReVelle, M. Scholssberg, J. Williams, Solving the maximal covering location problem with heuristic concentration, Computers and Operations Research, vol. 35(2), 2008, pp. 427 - 435.spa
dc.relation.references[20] T. Roubicek, Relaxation in Optimization Theory and Variational Calculus, De Gruyter, Berlin, 1997.spa
dc.relation.references[21] H. Shavandi, H. Mahlooji, A fuzzy queuing location model with a genetic algorithm for congested systems, Applied Mathematics and Computation, vol. 181(1), 2006, pp. 440 - 456.spa
dc.relation.references[22] P. Sitek, J. Wikarek, A hybrid approach to modeling and optimization for supply chain management with multimodal transport, in: Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 2013, pp. 777 - 782.spa
dc.relation.references[23] F. Zarandi, A. Haddad Sisakht, S. Davari, Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming, The International Journal of Advanced Manufacturing Technology, vol. 56, 2011, pp. 809 - 821.spa
dc.relation.references[24] G. Ghiani, G. Laporte, R. Musmanno Introduction to Logistics Systems Planning and Control, John Wiley & Sons Ltd, Chichester, England, 2004.spa
dc.relation.references[25] E. Polak, Optimization, Springer-Verlag, New York, USA, 1997.spa
dc.relation.references[26] D. Bertsekas, Nonlinear Programming, Athena Scienti_c, Belmont, USA, 1995.spa
dc.relation.references[27] A. Mitsos, B. Chachuat and P.I. Barton, McCormic - based relaxation algorithm, SIAM Journal on Optimization, vol. 20, 2009, pp. 573 - 601.spa
dc.relation.references[28] G. B. Dantzig, Discrete Variable Extremum Problems, Operations Research, vol. 5, 1957, pp. 266 - 277.spa
dc.relation.references[29] L. V. Snyder, M. S. Daskin, Models for Realible Supply Chain Network Design, unpublishing paper, Lehigh University, Bethlehem, PA, email: larry.snyder@lehigh.edu.spa
dc.relation.references[30] O. Berman, D. Krass, The generalized maximal covering location problem, Computers & Operations Research, vol. 29, 2002, pp. 563 - 581.spa
dc.relation.references[31] O. Karasakal, E. K. Karasakal, A maximal covering location model in the presence of partial coverage, Computers & Operations Research, vol. 31, 2004, pp. 1515 - 1526.spa
dc.relation.references[32] L. V. Snyder, P. M. Scaparra, M. S. Daskin, R. L. Church, Planning for Disruptions in Supply Chain Networks, Tutorials in Operations Research, Informs, 2005, pp. 1 - 23.spa
dc.relation.references[33] S.-D. Lee, W.-T. Chang, On solving the discrete location problems when the facilities are prone to failure, Applied Mathematical Modelling, vol. 31, 2007, pp. 817 - 831.spa
dc.relation.references[34] J. Nocedal, S. J. Wright, Numerical optimization, Springer-Verlag New York, Inc, USA, 1999.spa
dc.relation.references[35] J. F. Bonnas, J. C. Gilbert, C. Lemar_echal, C. A. Sagastiz_abal Numerical optimization, theoretical and practical Aspects, Springer-Verlag Berlin Heidelberg, Germany, 2003.spa
dc.relation.references[36] P. E. Gill, W. Murray, M. H. Wright Practical optimization, Springer Verlag Berlin Heidelberg, Germany, 2003.spa
dc.relation.references[37] P. Spellucci Numerische Verfahren der nichtlinearen Optimierung, Birkh auser Verlag, Basel, Schweiz, 1993.spa
dc.relation.references[38] Z. Han, D. Niyato, W. Saad, T. Ba_sar, A. Hj_rungnes Game Theory in Wireless and Communication Networks: Theory, Models, and Applications, Cambridge University Press, UK, 2012.spa
dc.relation.references[39] V. Azhmyakov, J.P. Fernandez-Gutierrez, S. K. Gadi, St. Pickl, A novel numerical approach to the resilient MCLP based supply chain optimization, in: Proceedings of the 12th IFAC Workshop on Intelligent Manufacturing Systems, Austin, USA, 2016, pp. 145 - 150.spa
dc.relation.references[40] V. Azhmyakov, J.P. Fernandez-Gutierrez, St. Pickl, A Separation Method for Maximal Covering Location Problems with Fuzzy Parameters, in: Italian Journal of Pure and Appied Mathematics, N. 38, 2017, pp. 653 - 670.spa
dc.relation.references[41] V. Azhmyakov, J.P. Fernandez-Gutierrez, E.I. Verriest, St. Pickl, A Separation based Optimization approach to Dynamic Maximal Covering Location Problems with Switched Structure, submitted to : Journal of Industrial and Management Optimization, N. XXX, 2018, pp. XXX -XXX.spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis de Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.description.degreenameDoctor en Modelación y Computación Científica
dc.description.degreelevelDoctorado
dc.publisher.grantorUniversidad de Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International