Mostrar el registro sencillo del ítem

dc.contributor.authorTejada J.C
dc.contributor.authorToro-Ossaba A
dc.contributor.authorMuñoz Montoya S
dc.contributor.authorRúa S.
dc.date.accessioned2022-09-14T14:33:26Z
dc.date.available2022-09-14T14:33:26Z
dc.date.created2022
dc.identifier.issn16879600
dc.identifier.urihttp://hdl.handle.net/11407/7367
dc.descriptionThis paper addresses the mechanical and electrical design of an autonomous guided vehicle (AGV) test prototype based on a systems engineering approach. First, the different phases of the systems engineering approach are described. The conceptual design begins with the house of quality, which weighs the relevance of each user requirement and ends with a functional representation of the vehicle. Then, the mechanical and electrical design are presented considering different subsystems such as the chassis, cargo platform, suspension system, power, and control components. Finally, different tests were carried out on the prototype, validating its movement and load capacities. The systems engineering approach as a methodology for the construction of complex systems has proven to be an excellent tool for the development of autonomous guided vehicles. © 2022 Juan C. Tejada et al.eng
dc.language.isoeng
dc.publisherHindawi Limited
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128352190&doi=10.1155%2f2022%2f7712312&partnerID=40&md5=07a1c89e24abbad218e9205678fbeb85
dc.sourceJournal of Robotics
dc.titleA Systems Engineering Approach for the Design of an Omnidirectional Autonomous Guided Vehicle (AGV) Testing Prototype
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemas
dc.type.spaArtículo
dc.identifier.doi10.1155/2022/7712312
dc.subject.keywordAutomatic guided vehicleseng
dc.subject.keywordAutomobile suspensionseng
dc.subject.keywordAutonomous vehicleseng
dc.subject.keywordConceptual designeng
dc.subject.keywordAutonomous guided vehicleseng
dc.subject.keywordElectrical designeng
dc.subject.keywordFunctional representationeng
dc.subject.keywordHouse of Qualityeng
dc.subject.keywordMechanical and electricaleng
dc.subject.keywordMechanical designeng
dc.subject.keywordTesting prototypeseng
dc.subject.keywordUser requirementseng
dc.subject.keywordVehicle testingeng
dc.subject.keywordVehicle testseng
dc.subject.keywordSystems engineeringeng
dc.relation.citationvolume2022
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationTejada, J.C., Faculty Of Engineering, Department Of Mechatronics, Universidad Eia Envigado, Medellín, Colombia
dc.affiliationToro-Ossaba, A., Faculty Of Engineering, Department Of Mechatronics, Universidad Eia Envigado, Medellín, Colombia
dc.affiliationMuñoz Montoya, S., Faculty Of Engineering, Department Of Mechatronics, Universidad Eia Envigado, Medellín, Colombia
dc.affiliationRúa, S., Electronics And Telecommunications Engineering Department, Universidad De Medellín, Medellín, Colombia
dc.relation.referencesYao, F., Keller, A., Ahmad, M., Ahmad, B., Harrison, R., Colombo, A.W., Optimizing the scheduling of autonomous guided vehicle in a manufacturing process (2018) Proceedings-IEEE 16th International Conference on Industrial Informatics, INDIN 2018, pp. 264-269. , Institute of Electrical and Electronics Engineers Inc. 2-s2.0-85055479926
dc.relation.referencesLiao, Y., Deschamps, F., Loures, E.D.F.R., Ramos, L.F.P., Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal (2017) International Journal of Production Research, 55 (12), pp. 3609-3629. , 2-s2.0-85018651607
dc.relation.referencesLynch, L., McGuinness, F., Clifford, J., Rao, M., Walsh, J., Toal, D., Newe, T., Integration of autonomous intelligent vehicles into manufacturing environments: Challenges (2019) Procedia Manufacturing, 38, pp. 1683-1690. , Elsevier B.V
dc.relation.referencesDas, A., Towards theory building in manufacturing flexibility (2001) International Journal of Production Research, 39 (18), pp. 4153-4177. , 2-s2.0-0035895121
dc.relation.referencesDolgui, A., Proth, J.M., (2010) Supply Chain Engineering: Useful Methods and Techniques, , London Springer
dc.relation.referencesDubey, R., Ali, S.S., Identification of flexible manufacturing system dimensions and their interrelationship using total interpretive structural modelling and fuzzy MICMAC analysis (2014) Global Journal of Flexible Systems Management, 15 (2), pp. 131-143. , 2-s2.0-84905726037
dc.relation.referencesBrettel, M., Friederichsen, N., Keller, M., Rosenberg, M., How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective (2014) International Journal of Mechanical, Industrial Science Engineering
dc.relation.referencesFragapane, G., Ivanov, D., Peron, M., Sgarbossa, F., Strandhagen, J.O., Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics (2020) Annals of Operations Research
dc.relation.referencesGuizzo, E., Three engineers, hundreds of robots, one warehouse (2008) IEEE Spectrum, 45 (7), pp. 26-34. , 2-s2.0-47049108375
dc.relation.referencesBogh, S., Schou, C., Ruehr, T., Kogan, Y., Doemel, A., Brucker, M., Eberst, C., Hennessy, T., Integration and assessment of multiple mobile manipulators in a real-world industrial production facility (2014) ISR/Robotik 2014
dc.relation.references41st International Symposium on Robotics, pp. 1-8
dc.relation.referencesBourne, D., Choset, H., Hu, H., Kantor, G., Niessl, C., Rubinstein, Z., Simmons, R., Smith, S., Mobile manufacturing of large structures (2015) Proceedings-IEEE International Conference on Robotics and Automation, pp. 1565-1572. , Institute of Electrical and Electronics Engineers Inc. 2-s2.0-84938223720
dc.relation.referencesSakai, R., Katsumata, S., Miki, T., Yano, T., Wei, W., Okadome, Y., Chihara, N., Shimizu, T., A mobile dual-arm manipulation robot system for stocking and disposing of items in a convenience store by using universal vacuum grippers for grasping items (2019) Advanced Robotics, 34 (3-4), pp. 219-234
dc.relation.referencesNagatani, K., Ikeda, A., Ishigami, G., Yoshida, K., Nagai, I., Development of a visual odometry system for a wheeled robot on loose soil using a telecentric camera (2010) Advanced Robotics, 24 (8-9), pp. 1149-1167. , 2-s2.0-77953204740
dc.relation.referencesKeymasi Khalaji, A., Jalalnezhad, M., Robust forward\backward control of wheeled mobile robots (2021) ISA Transactions, 115 (SEP), pp. 32-45
dc.relation.referencesDe Ryck, M., Pissoort, D., Holvoet, T., Demeester, E., Decentral task allocation for industrial AGV-systems with resource constraints (2021) Journal of Manufacturing Systems, 59, pp. 310-319
dc.relation.referencesTakahashi, R., Inagaki, S., Walk control of segmented multi-legged robot based on integrative control of legs and 2-DoF active intersegment joints (2016) Advanced Robotics, 30 (20), pp. 1354-1364. , 2-s2.0-84980013078
dc.relation.referencesIto, K., Homma, Y., Rossiter, J., The soft multi-legged robot inspired by octopus: climbing various columnar objects (2020) Advanced Robotics, 34 (17), pp. 1096-1109
dc.relation.referencesJames, P.M., Prakash, A., Kalburgi, V., Sreedharan, P., Design, analysis, manufacturing of four-legged walking robot with insect type leg (2021) Materials Today Proceedings, 46, pp. 4647-4652
dc.relation.referencesKameduła, M., Kashiri, N., Tsagarakis, N.G., Wheeled motion kinematics and control of a hybrid mobility CENTAURO robot (2020) Robotics and Autonomous Systems, 128 (JUN). , 103482
dc.relation.referencesMertyüz, İ., Tanyildizi, A.K., Taşar, B., Tatar, A.B., Yakut, O., FUHAR: a transformable wheel-legged hybrid mobile robot (2020) Robotics and Autonomous Systems, 133 (NOV). , 103627
dc.relation.referencesQian, J., Zi, B., Wang, D., Ma, Y., Zhang, D., The design and development of an Omni-Directional mobile robot oriented to an intelligent manufacturing system (2017) Sensors, 17 (9), p. sep. , 2-s2.0-85029359328
dc.relation.referencesPeng, T., Qian, J., Zi, B., Liu, J., Wang, X., Mechanical design and control system of an omni-directional mobile robot for material conveying (2016) Procedia CIRP, 56, pp. 412-415. , 2-s2.0-85007013616
dc.relation.referencesLi, Y., Dai, S., Zhao, L., Yan, X., Shi, Y., Topological design methods for mecanum wheel configurations of an omnidirectional mobile robot (2019) Symmetry, 11 (10)
dc.relation.referencesTamara, M.N., Darmawan, A., Tamami, N., Sugianto, C., Kuswadi, S., Pramujati, B., Electronics system design for low cost agv type forklift, pp. 464-469. , 2018 International Conference on Applied Science and Technology (iCAST) October 2018 Manado, Indonesia 2-s2.0-85069158450
dc.relation.referencesZhang, J., Liu-Henke, X., Model-based design of the vehicle dynamics control for an omnidirectional automated guided vehicle (agv), pp. 1-6. , 2020 International Conference Mechatronic Systems and Materials (MSM) July 2020 Bialystok, Poland
dc.relation.referencesAloui, K., Guizani, A., Hammadi, M., Soriano, T., Haddar, M., Integrated design methodology of automated guided vehicles based on swarm robotics (2021) Applied Sciences, 11 (13)
dc.relation.referencesLee, J.W., Daly, S.R., Huang-Saad, A., Rodriguez, G., Seifert, C.M., Cognitive strategies in solution mapping: how engineering designers identify problems for technological solutions (2020) Design Studies, 71, p. 100967
dc.relation.referencesDym, C., (2000) Engineering Design: A Project-Based Introduction, , New York John Wiley
dc.relation.referencesBucolo, M., Buscarino, A., Famoso, C., Fortuna, L., Frasca, M., Control of imperfect dynamical systems (2019) Nonlinear Dynamics, 98 (4), pp. 2989-2999. , 2-s2.0-85068310964
dc.relation.references(2017) NASA Systems Engineering Handbook: NASA/SP-2016-6105 Rev2-Full Color, , Nasa, Washington, DC, USA Version 12th Media Services
dc.relation.referencesSadraey, M., (2012) Aircraft Design: A Systems Engineering Approach, , Hoboken, New Jersey Wiley
dc.relation.referencesFay, A., Vogel-Heuser, B., Frank, T., Eckert, K., Hadlich, T., Diedrich, C., Enhancing a model-based engineering approach for distributed manufacturing automation systems with characteristics and design patterns (2015) Journal of Systems and Software, 101, pp. 221-235. , 2-s2.0-84921631007
dc.relation.referencesBucolo, M., Buscarino, A., Famoso, C., Fortuna, L., Gagliano, S., Automation of the Leonardo da Vinci Machines (2020) Machines, 8 (3)
dc.relation.referencesAristizábal, L.M., Zuluaga, C.A., Rúa, S., Vásquez, R.E., Modular hardware architecture for the development of underwater vehicles based on systems engineering (2021) Journal of Marine Science and Engineering, 9 (5)
dc.relation.referencesTagliaferri, C., Evangelisti, S., Acconcia, F., Domenech, T., Ekins, P., Barletta, D., Lettieri, P., Life cycle assessment of future electric and hybrid vehicles: a cradle-to-grave systems engineering approach (2016) Chemical Engineering Research and Design, 112 (AUG), pp. 298-309. , 2-s2.0-84978291001
dc.relation.referencesDieter, G.E., Schmidt, L.C., (2009) Engineering Design, , Boston McGraw-Hill Higher Education
dc.relation.referencesTaheri, H., Qiao, B., Ghaeminezhad, N., Kinematic model of a four mecanum wheeled mobile (2015) International Journar of Computer Applications, 113, p. 4
dc.relation.referencesSiegwart, R., Nourbakhsh, I.R., Scaramuzza, D., (2011) Introduction to Autonomous Mobile Robots, , 2nd ed. The MIT Press
dc.relation.referencesRoehrig, C., Heller, A., Heß, D., Künemund, F., Global localization and position tracking of automatic guided vehicles using passive rfid technology, pp. 1-8. , ISR/Robotik 2014
dc.relation.references41st International Symposium on Robotics June 2014 Munich, Germany
dc.relation.referencesGill, J.S., (2022), navigation/tutorials/robotsetup
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem