Mostrar el registro sencillo del ítem

dc.contributor.authorRubio-Clemente A
dc.contributor.authorGutiérrez J
dc.contributor.authorHenao H
dc.contributor.authorMelo A.M
dc.contributor.authorPérez J.F
dc.contributor.authorChica E.
dc.date.accessioned2022-09-14T14:33:27Z
dc.date.available2022-09-14T14:33:27Z
dc.date.created2021
dc.identifier.issn10183639
dc.identifier.urihttp://hdl.handle.net/11407/7373
dc.descriptionIn this work, the adsorption capacity of the biochar obtained from Pinus patula biomass micro-gasification was studied using malachite green (MG) as the probe pollutant. For this purpose, the biomass type (wood pellets and chips) was selected to produce two kinds of biochar (BC). Afterwards, the effects of the adsorbent dose (6, 9 and 12 g/L), the solution pH (4, 7 and 10) and the BC particle size distribution (150–300, 300–450 and 450–600 μm) for the maximization of the MG retention by the selected BC were evaluated using a faced-centered central composite design, as response surface methodology. The results indicated that the BC derived from wood chips (BWC) exhibited a higher MG dye adsorption capacity than the BC obtained from the wood pellets (BWP) gasification under the same operating conditions after having reached the equilibrium. A second-order regression model was built for describing the MG adsorption behaviour by BWC under the considered experimental domain. The model, which was validated, resulted to be statistically significant and suitable to represent the MG adsorption by the studied BC with a p-value of 0.00 and a correlation coefficient (R2) of 95.59%. Additionally, a three-dimensional response surface graph and a contour plot were utilized to analyze the interaction effects between the factors influencing the adsorption system and to discern the optimal operating conditions for the use of BWC. The maximal MG dye retention (99.70%) was found to be at an adsorbent dose, pH solution and a particle size distribution of 9.80 g/L, 10 and from 150 to 300 μm, respectively. Therefore, the BWC tested can be utilized for the treatment of water polluted with dyes, contributing to the establishment of a circular economy. © 2021 King Saud Universityeng
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85112590273&doi=10.1016%2fj.jksues.2021.07.006&partnerID=40&md5=f5df07f3b9a38e943795d7de22d85522
dc.sourceJournal of King Saud University - Engineering Sciences
dc.titleAdsorption capacity of the biochar obtained from Pinus patula wood micro-gasification for the treatment of polluted water containing malachite green dye
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jksues.2021.07.006
dc.subject.keywordBiochareng
dc.subject.keywordBiomass micro-gasificationeng
dc.subject.keywordCircular economyeng
dc.subject.keywordDye adsorptioneng
dc.subject.keywordResponse surface methodologyeng
dc.subject.keywordWater pollutioneng
dc.subject.keywordCarbonate mineralseng
dc.subject.keywordDyeseng
dc.subject.keywordGasificationeng
dc.subject.keywordLight transmissioneng
dc.subject.keywordParticle sizeeng
dc.subject.keywordParticle size analysiseng
dc.subject.keywordPelletizingeng
dc.subject.keywordRegression analysiseng
dc.subject.keywordSize distributioneng
dc.subject.keywordSurface propertieseng
dc.subject.keywordWater pollutioneng
dc.subject.keywordWater treatmenteng
dc.subject.keywordWood productseng
dc.subject.keywordAdsorption behavioureng
dc.subject.keywordAdsorption capacitieseng
dc.subject.keywordCentral composite designseng
dc.subject.keywordCorrelation coefficienteng
dc.subject.keywordOptimal operating conditionseng
dc.subject.keywordResponse surface methodologyeng
dc.subject.keywordSecond-order regression modeleng
dc.subject.keywordThree-dimensional responseeng
dc.subject.keywordAdsorptioneng
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRubio-Clemente, A., Facultad de Ingeniería, Tecnológico de Antioquia-Institución Universitaria TdeA, Calle 78b No. 72A-220, Medellín, 050034, Colombia, Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia, Facultad de Ingenierías, Universidad de Medellín, Cra. 87. No. 30-65, Medellín, Colombia
dc.affiliationGutiérrez, J., Grupo de Manejo Eficiente de la Energía (GIMEL), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, 050010, Colombia
dc.affiliationHenao, H., Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia
dc.affiliationMelo, A.M., Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia
dc.affiliationPérez, J.F., Grupo de Manejo Eficiente de la Energía (GIMEL), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, 050010, Colombia
dc.affiliationChica, E., Grupo de Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia, Calle 70, No 52-21, Medellín, 050010, Colombia
dc.relation.referencesAbukhadra, M. R., Sayed, M. A., Rabie, A. M., & Ahmed, S. A. (2019). Surface decoration of diatomite by Ni/NiO nanoparticles as hybrid composite of enhanced adsorption properties for malachite green dye and hexavalent chromium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 583-593. doi:10.1016/j.colsurfa.2019.06.018
dc.relation.referencesBezerra, M. A., Ferreira, S. L. C., Novaes, C. G., dos Santos, A. M. P., Valasques, G. S., da Mata Cerqueira, U. M. F., & dos Santos Alves, J. P. (2019). Simultaneous optimization of multiple responses and its application in analytical chemistry – A review. Talanta, 194, 941-959. doi:10.1016/j.talanta.2018.10.088
dc.relation.referencesChoudhary, M., Kumar, R., & Neogi, S. (2020). Activated biochar derived from opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. Journal of Hazardous Materials, 392 doi:10.1016/j.jhazmat.2020.122441
dc.relation.referencesDíez, H. E., & Pérez, J. F. (2019). Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier. Environmental Progress and Sustainable Energy, 38(4) doi:10.1002/ep.13105
dc.relation.referencesGokulan, R., Ganesh Prabhu, G., & Jegan, J. (2019). A novel sorbent ulva lactuca-derived biochar for remediation of remazol brilliant orange 3R in packed column. Water Environment Research, 91(7), 642-649. doi:10.1002/wer.1092
dc.relation.referencesGonzález, W. A., & Pérez, J. F. (2019). CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets. Energy, 186 doi:10.1016/j.energy.2019.115904
dc.relation.referencesGutiérrez, J., Rubio-Clemente, A., & Pérez, J. F. (2021). Effect of main solid biomass commodities of patula pine on biochar properties produced under gasification conditions. Industrial Crops and Products, 160 doi:10.1016/j.indcrop.2020.113123
dc.relation.referencesGwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 197, 732-749. doi:10.1016/j.jenvman.2017.03.087
dc.relation.referencesHamad, H. T. (2021). Removal of phenol and inorganic metals from wastewater using activated ceramic. Journal of King Saud University - Engineering Sciences, 33(4), 221-226. doi:10.1016/j.jksues.2020.04.006
dc.relation.referencesHan, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336-341. doi:10.1016/j.chemosphere.2015.11.050
dc.relation.referencesHubbard, W. G. (2015). Wood bioenergy. Bioenergy, , 55-71. Retrieved from www.scopus.com
dc.relation.referencesJawad, A. H., & Abdulhameed, A. S. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecology and Environment, 5(6), 456-469. doi:10.1007/s40974-020-00177-z
dc.relation.referencesJawad, A. H., Bardhan, M., Islam, M. A., Islam, M. A., Syed-Hassan, S. S. A., Surip, S. N., . . . Khan, M. R. (2020). Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces, 21 doi:10.1016/j.surfin.2020.100688
dc.relation.referencesJawad, A. H., Ishak, M. A. M., Farhan, A. M., & Ismail, K. (2017). Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste. Desalination and Water Treatment, 62, 208-220. doi:10.5004/dwt.2017.20132
dc.relation.referencesJindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613-6621. doi:10.5194/bg-11-6613-2014
dc.relation.referencesKosek, K., Luczkiewicz, A., Fudala-Ksiżek, S., Jankowska, K., Szopińska, M., Svahn, O., . . . Björklund, E. (2020). , 213-226. Retrieved from www.scopus.com
dc.relation.referencesKulaksiz, E., Gözmen, B., Kayan, B., & Kalderis, D. (2017). Adsorption of malachite green on fe-modified biochar: Influencing factors and process optimization. Desalination and Water Treatment, 74, 383-394. doi:10.5004/dwt.2017.20601
dc.relation.referencesKurniawan, S., Yuliwati, E., Ariyanto, E., Morsin, M., Sanudin, R., & Nafisah, S. (0000). Retrieved from www.scopus.com
dc.relation.referencesLenis, Y. A., & Pérez, J. F. (2014). Gasification of sawdust and wood chips in a fixed bed under autothermal and stable conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 36(23), 2555-2565. doi:10.1080/15567036.2013.875081
dc.relation.referencesLiu, G., Abukhadra, M. R., El-Sherbeeny, A. M., Mostafa, A. M., & Elmeligy, M. A. (2020). Insight into the photocatalytic properties of diatomite@Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of cr (VI) under visible light. Journal of Environmental Management, 254 doi:10.1016/j.jenvman.2019.109799
dc.relation.referencesLou, K., Rajapaksha, A. U., Ok, Y. S., & Chang, S. X. (2016). Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chemical Speciation and Bioavailability, 28(1-4), 42-50. doi:10.1080/09542299.2016.1165080
dc.relation.referencesManojkumar, N., Muthukumaran, C., & Sharmila, G. (0000). Retrieved from www.scopus.com
dc.relation.referencesMarzbali, M. H., Mir, A. A., Pazoki, M., Pourjamshidian, R., & Tabeshnia, M. (2017). Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 5(2), 1946-1956. doi:10.1016/j.jece.2017.03.018
dc.relation.referencesMedic, D., Darr, M., Potter, B., & Shah, A. (2010). Effect of torrefaction process parameters on biomass feedstock upgrading. 2010 Pittsburgh, Pennsylvania, June 20-June 23, 2010, , 1. Retrieved from www.scopus.com
dc.relation.referencesMohamed, A., Ghobara, M. M., Abdelmaksoud, M. K., & Mohamed, G. G. (2019). A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers. Separation and Purification Technology, 210, 935-942. doi:10.1016/j.seppur.2018.09.014
dc.relation.referencesMontgomery, D. C. (1996). Introduction to Statistical Quality Control, Retrieved from www.scopus.com
dc.relation.referencesMoosavi, S., Li, R. Y. M., Lai, C. W., Yusof, Y., Gan, S., Akbarzadeh, O., . . . Johan, M. R. (2020). Methylene blue dye photocatalytic degradation over synthesised fe3 o4 /ac/tio2 nano-catalyst: Degradation and reusability studies. Nanomaterials, 10(12), 1-15. doi:10.3390/nano10122360
dc.relation.referencesNidheesh, P., Gopinath, A., Ranjith, N., Akre, A. P., Sreedharan, V., & Kumar, M. S. (2020). Potential role of biochar in advanced oxidation processes: A sustainable approach. Chemical Engineering Journal, 126582 Retrieved from www.scopus.com
dc.relation.referencesPérez, J. F., Pelaez-Samaniego, M. R., & Garcia-Perez, M. (2019). Torrefaction of fast-growing colombian wood species. Waste and Biomass Valorization, 10(6), 1655-1667. doi:10.1007/s12649-017-0164-y
dc.relation.referencesProtásio, T. P., Bufalino, L., Tonoli, G. H. D., Guimarães Junior, M. G., Trugilho, P. F., & Mendes, L. M. (2013). Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. BioResources, 8(1), 1166-1185. doi:10.15376/biores.8.1.1166-1185
dc.relation.referencesQian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R. L. (2013). Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies, 6(8), 3972-3986. doi:10.3390/en6083972
dc.relation.referencesRajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., . . . Gupta, V. K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130-138. doi:10.1016/j.jiec.2015.11.001
dc.relation.referencesRubio-Clemente, A., Chica, E., & Peñuela, G. A. (2021). Benzo[a]pyrene emerging micropollutant oxidation under the action of fenton reactants in real surface water: Process optimization and application. Polycyclic Aromatic Compounds, 41(1), 95-108. doi:10.1080/10406638.2019.1570950
dc.relation.referencesRubio-Clemente, A., Chica, E., & Peñuela, G. A. (2020). Photolysis of a mixture of anthracene and benzo[a]pyrene at ultra-trace levels in natural water with disinfection purposes. Journal of Environmental Sciences (China), 92, 79-94. doi:10.1016/j.jes.2020.02.002
dc.relation.referencesSewu, D. D., Boakye, P., Jung, H., & Woo, S. H. (2017). Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and saccharina japonica. Bioresource Technology, 244, 1142-1149. doi:10.1016/j.biortech.2017.08.103
dc.relation.referencesSharma, G., Bhogal, S., Gupta, V. K., Agarwal, S., Kumar, A., Pathania, D., . . . Stadler, F. J. (2019). Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. Journal of Molecular Liquids, 275, 499-509. doi:10.1016/j.molliq.2018.11.070
dc.relation.referencesSilva, C. E. D. F., Gama, B. M. V. D., Gonçalves, A. H. D. S., Medeiros, J. A., & Abud, A. K. D. S. (2020). Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. Journal of King Saud University - Engineering Sciences, 32(6), 351-359. doi:10.1016/j.jksues.2019.04.006
dc.relation.referencesSizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34-47. doi:10.1016/j.biortech.2017.07.082
dc.relation.referencesStammati, A., Nebbia, C., De Angelis, I., Albo, A. G., Carletti, M., Rebecchi, C., . . . Dacasto, M. (2005). Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology in Vitro, 19(7), 853-858. doi:10.1016/j.tiv.2005.06.021
dc.relation.referencesSurip, S. N., Abdulhameed, A. S., Garba, Z. N., Syed-Hassan, S. S. A., Ismail, K., & Jawad, A. H. (2020). H2SO4-treated malaysian low rank coal for methylene blue dye decolourization and cod reduction: Optimization of adsorption and mechanism study. Surfaces and Interfaces, 21 doi:10.1016/j.surfin.2020.100641
dc.relation.referencesTkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717 doi:10.1016/j.scitotenv.2020.137222
dc.relation.referencesTong, Y., McNamara, P. J., & Mayer, B. K. (2019). Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environmental Science: Water Research and Technology, 5(5), 821-838. doi:10.1039/c8ew00938d
dc.relation.references(1991) , pp. 3583-3597. Van Soest, P.v., Robertson, J., Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74
dc.relation.referencesVyavahare, G. D., Gurav, R. G., Jadhav, P. P., Patil, R. R., Aware, C. B., & Jadhav, J. P. (2018). Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 194, 306-315. doi:10.1016/j.chemosphere.2017.11.180
dc.relation.referencesWu, J., Yang, J., Feng, P., Huang, G., Xu, C., & Lin, B. (2020). High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere, 246 doi:10.1016/j.chemosphere.2019.125734
dc.relation.referencesZhang, A., Li, X., Xing, J., & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8(4) doi:10.1016/j.jece.2020.104196
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem