Mostrar el registro sencillo del ítem

dc.contributor.authorRúa S
dc.contributor.authorVásquez R.E
dc.contributor.authorCrasta N
dc.contributor.authorBetancur M.J
dc.contributor.authorPascoal A.
dc.date.accessioned2022-09-14T14:33:56Z
dc.date.available2022-09-14T14:33:56Z
dc.date.created2022
dc.identifier.issn298018
dc.identifier.urihttp://hdl.handle.net/11407/7526
dc.descriptionThis work addresses the observability analysis for a cooperative range-based navigation system that uses a beacon with circular motion installed on-board the support platform to find the location of an underwater vehicle. First, the observability analysis is carried out without taking into account the ocean current that affects the vehicle. To that end, an augmented state-space realization is obtained in order to convert the nonlinear system into a linear time varying (LTV) system. Then, the observability analysis is performed considering constraints on the initial conditions due to the state transformation. Based on these results, a second observability analysis is carried out taking into account ocean current in the model. We show that, by knowing the initial beacon's position, the system is observable when the vehicle is moving in a trim trajectory with and without ocean currents. The obtained results include information about the initial conditions of the beacon and the ocean currents in the observability analysis. This result is important from a theoretical point of view, and represents a new way of implementing range-based navigation systems, without relying on deviation of the vehicle's mission or the need of another vehicle to ensure observability. © 2022 Elsevier Ltdeng
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124454948&doi=10.1016%2fj.oceaneng.2022.110697&partnerID=40&md5=4f98e685e7536bcf80a598bade08a28a
dc.sourceOcean Engineering
dc.titleObservability analysis for a cooperative range-based navigation system that uses a rotating single beacon
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicaciones
dc.type.spaArtículo
dc.identifier.doi10.1016/j.oceaneng.2022.110697
dc.subject.keywordAcoustic navigationeng
dc.subject.keywordCooperative controleng
dc.subject.keywordNavigation, guidance and controleng
dc.subject.keywordObservability analysiseng
dc.subject.keywordOcean explorationeng
dc.subject.keywordUnderwater vehicleseng
dc.relation.citationvolume248
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationRúa, S., School of Engineering, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia
dc.affiliationVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia
dc.affiliationCrasta, N., Laboratory of Robotics and Systems in Engineering and Science (LARSyS), IST/University of Lisbon, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
dc.affiliationBetancur, M.J., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia
dc.affiliationPascoal, A., Laboratory of Robotics and Systems in Engineering and Science (LARSyS), IST/University of Lisbon, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
dc.relation.referencesAl-Khatib, H., Antonelli, G., Caffaz, A., Caiti, A., Casalino, G., de Jong, I.B., Duarte, H., Polani, D., Navigation, guidance and control of underwater vehicles within the widely scalable mobile underwater sonar technology project: an overview (2015) IFAC-PapersOnLine, 48 (2), pp. 189-193
dc.relation.referencesAlcocer, A., Positioning and Navigation Systems for Robotic Underwater Vehicles (2009), (Ph.D. thesis) Universidade Técnica de Lisboa, Instituto Superior Técnico
dc.relation.referencesBatista, P.T.M., Sensor-based Navigation and Control of Autonomous Vehicles (2010), (Ph.D. thesis) Universidade de Lisboa, Instituto Superior Técnico
dc.relation.referencesBatista, P., Long baseline navigation with clock of fset estimation and discrete-time measurements (2015) Control Eng. Pract., 35, pp. 43-53
dc.relation.referencesBatista, P., Silvestre, C., Oliveira, P., Single range aided navigation and source localization: Observability and filter design (2011) Systems Control Lett., 60 (8), pp. 665-673
dc.relation.referencesBayat, M., Nonlinear Robust Adaptive State Estimation (2015), (Ph.D. thesis) Universidade de Lisboa, Instituto Superior Técnico
dc.relation.referencesBayat, M., Aguiar, A.P., Observability analysis for AUV range-only localization and mapping measures of unobservability and experimental results (2012) IFAC Proc. Vol., 45 (27), pp. 325-330
dc.relation.referencesBayat, M., Crasta, N., Aguiar, A.P., Pascoal, A.M., Range-based underwater vehicle localization in the presence of unknown ocean currents: Theory and experiments (2016) IEEE Trans. Control Syst. Technol., 24 (1), pp. 122-139
dc.relation.referencesCasey, T., Guimond, B., Hu, J., Underwater vehicle positioning based on time of arrival measurements from a single beacon (2007) OCEANS 2007, pp. 1-8
dc.relation.referencesChen, H.H., In-situ alignment calibration of attitude and ultra short baseline sensors for precision underwater positioning (2008) Ocean Eng., 35 (15), pp. 1448-1462
dc.relation.referencesChoyekh, M., Kato, N., Yamaguchi, Y., Dewantara, R., Chiba, H., Senga, H., Yoshie, M., Short, T., Development and operation of underwater robot for autonomous tracking and monitoring of subsea plumes after oil spill and gas leak from seabed and analyses of measured data (2017) Applications To Marine Disaster Prevention: Spilled Oil and Gas Tracking Buoy System, pp. 17-93. , Springer Japan Tokyo
dc.relation.referencesChrist, R.D., Wernli, R.L., The ROV Manual, A User Guide For Remotely Operated Vehicles (2014), second ed. Butterworth-Heinemann Oxford
dc.relation.referencesClark, J.M.C., Kountouriotis, P.A., Vinter, R.B., A Gaussian mixture filter for range-only tracking (2011) IEEE Trans. Automat. Control, 56 (3), pp. 602-613
dc.relation.referencesCrasta, N., Bayat, M., Aguiar, A.P., Pascoal, A.M., Observability analysis of 2D single beacon navigation in the presence of constant currents for two classes of maneuvers (2013) IFAC Proc. Vol., 46 (33), pp. 227-232
dc.relation.referencesCrasta, N., Bayat, M., Aguiar, A.P., Pascoal, A.M., Observability analysis of 3D AUV trimming trajectories in the presence of ocean currents using single beacon navigation (2014) IFAC Proc. Vol., 47 (3), pp. 4222-4227
dc.relation.referencesCrasta, N., Bayat, M., Aguiar, A.P., Pascoal, A.M., Observability analysis of 3D AUV trimming trajectories in the presence of ocean currents using range and depth measurements (2015) Ann. Rev. Control, 40, pp. 142-156
dc.relation.referencesCrasta, N., Moreno-Salinas, D., Bayat, M., Pascoal, A., Aranda, J., Optimal motion planning for range-based marine vehicle positioning in the presence of unknown currents (2016) IFAC-PapersOnLine, 49 (23), pp. 41-47. , 10th IFAC Conference on Control Applications in Marine Systems CAMS 2016
dc.relation.referencesDandach, S.H., Fidan, B., Dasgupta, S., Anderson, B.D.O., Adaptive source localization by mobile agents (2006) Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2045-2050
dc.relation.referencesDandach, S.H., Fidan, B., Dasgupta, S., Anderson, B.D., A continuous time linear adaptive source localization algorithm, robust to persistent drift (2009) Systems Control Lett., 58 (1), pp. 7-16
dc.relation.referencesDavis, P., Brockhurst, J., Subsea pipeline infrastructure monitoring: A framework for technology review and selection (2015) Ocean Eng., 104, pp. 540-548
dc.relation.referencesEmami, M., Taban, M.R., A customized H-infinity algorithm for underwater navigation system: With experimental evaluation (2017) Ocean Eng., 130, pp. 611-619
dc.relation.referencesFont, F.B., Oliver, G., Wirth, S., Massot, M., Negre, P.L., Beltran, J.P., Visual sensing for autonomous underwater exploration and intervention tasks (2015) Ocean Eng., 93, pp. 25-44
dc.relation.referencesFossen, T.I., Handbook of Marine Craft Hydrodynamics and Motion Control (2011), John Wiley & Sons West Sussex, United Kingdom
dc.relation.referencesFrazzoli, E., Robust Hybrid Control for Autonomous Vehicle Motion Planning (2001), (Ph.D. thesis) MIT
dc.relation.referencesGadre, A., Observability analysis in navigation systems with an underwater vehicle application (2007), (Ph.D. thesis) Virginia Polytechnic Institute and State University
dc.relation.referencesGadre, A.S., Stilwell, D.J., Toward underwater navigation based on range measurements from a single location (2004) IEEE International Conference on Robotics and Automation, pp. 4472-4477. , IEEE New Orleans, LA
dc.relation.referencesGadre, A.S., Stilwell, D.J., A complete solution to underwater navigation in the presence of unknown currents based on range measurements from a single location (2005) 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1420-1425. , IEEE
dc.relation.referencesHan, Y., Shi, C., Sun, D., Zhang, J., Research on integrated navigation algorithm based on ranging information of single beacon (2018) Appl. Acoust., 131, pp. 203-209
dc.relation.referencesHartsfield, C., Single Transponder Range on ly Navigation Geometry (STRONG) Applied to REMUS Autonomous Under Water Vechiles (2005), (Master's Thesis) Massachusetts Institute of Technology
dc.relation.referencesHermann, R., Krener, A., Nonlinear controllability and observability (1977) IEEE Trans. Automat. Control, 22 (5), pp. 728-740
dc.relation.referencesHuang, G.P., Zhou, K.X., Trawny, N., Roumeliotis, S.I., A bank of maximum a posteriori estimators for single-sensor range-only target tracking (2010) Proceedings of the 2010 American Control Conference, pp. 6974-6980
dc.relation.referencesHuang, G., Zhou, K., Trawny, N., Roumeliotis, S.I., A bank of maximum a posteriori (MAP) estimators for target tracking (2015) IEEE Trans. Robot., 31 (1), pp. 85-103
dc.relation.referencesHumphris, S.E., Soule, A., Vehicles for deep-sea exploration (2019) Encyclopedia of Ocean Sciences (Third Edition), pp. 21-30. , Cochran J.K. Bokuniewicz H.J. Yager P.L. third ed. Academic Press Oxford
dc.relation.referencesHung, N.T., Crasta, N., Moreno-Salinas, D., Pascoal, A.M., Johansen, T.A., Range-based target localization and pursuit with autonomous vehicles: An approach using posterior CRLB and model predictive control (2020) Robot. Auton. Syst., 132
dc.relation.referencesHung, N.T., Rego, F.F.C., Pascoal, A.M., Cooperative distributed estimation and control of multiple autonomous vehicles for range-based underwater target localization and pursuit (2021) IEEE Trans. Control Syst. Technol., pp. 1-15
dc.relation.referencesHunt, M.H., Marquet, W.M., Moller, D.A., Peal, K.R., Smith, W.K., Spindel, R.C., An acoustic navigation system: Tech. Rep. WHOI-74-6 (1974), Woods hole oceanographic institutions Woods Hole, Massachusetts 02543
dc.relation.referencesIndiveri, G., Palma, D.D., Parlangeli, G., Single range localization in 3-d: Observability and robustness issues (2016) IEEE Trans. Control Syst. Technol., 24 (5), pp. 1853-1860
dc.relation.referencesIndiveri, G., Parlangeli, G., Further results on the observability analysis and observer design for single range localization in 3D (2013), CoRR abs/1308.0517
dc.relation.referencesJi, D., Deng, Z., Li, S., Ma, D., Wang, T., Song, W., Zhu, S., Yang, X., A novel case of practical exponential observer using extended Kalman filter (2018) IEEE Access, 6, pp. 58004-58011
dc.relation.referencesKotta, Ü., Moog, C.H., Tõnso, M., Minimal realizations of nonlinear systems (2018) Automatica, 95, pp. 207-212
dc.relation.referencesLarsen, M., Synthetic long baseline navigation of underwater vehicles (2000) OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings, pp. 2043-2050. , IEEE
dc.relation.referencesLee, P.M., Jun, B.H., Lim, Y.K., Review on underwater navigation system based on range measurements from on e reference (2008) OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean, pp. 1-5
dc.relation.referencesLudvigsen, M., Sørensen, A.J., Towards integrated autonomous underwater operations for ocean mapping and monitoring (2016) Ann. Rev. Control, 42, pp. 145-157
dc.relation.referencesLv, P.F., He, B., Guo, J., Shen, Y., Yan, T.H., Sha, Q.X., Underwater navigation methodology based on intelligent velocity model for standard AUV (2020) Ocean Eng., 202
dc.relation.referencesMandić, F., Mišković, N., Palomeras, N., Carreras, M., Vallicrosa, G., Mobile beacon control algorithm that ensures observability in single range navigation (2016) IFAC-PapersOnLine, 49 (23), pp. 48-53
dc.relation.referencesMu, X., He, B., Zhang, X., Song, Y., Shen, Y., Feng, C., End-to-end navigation for autonomous underwater vehicle with hybrid recurrent neural networks (2019) Ocean Eng., 194
dc.relation.referencesNewman, P., Leonard, J., Pure range-only sub-sea SLAM (2003) 2003 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1921-1926
dc.relation.referencesOpderbecke, J., At-sea calibration of a USbl underwater vehicle positioning system (1997) Oceans 97. MTS/IEEE Conference Proceedings, pp. 721-726. , IEEE
dc.relation.referencesPalma, D.D., Arrichiello, F., Parlangeli, G., Indiveri, G., Underwater localization using single beacon measurements: Observability analysis for a double integrator system (2017) Ocean Eng., 142, pp. 650-665
dc.relation.referencesParlangeli, G., Indiveri, G., Single range observability for cooperative underactuated underwater vehicles. (2014) IFAC Proc. Vol., 47 (3), pp. 5127-5138
dc.relation.referencesParlangeli, G., Indiveri, G., Single range observability for cooperative underactuated underwater vehicles (2015) Ann. Rev. Control, 40, pp. 129-141
dc.relation.referencesParlangeli, G., Pedone, P., Indiveri, G., Relative pose observability analysis for 3D nonholonomic vehicles based on range measurements only (2012) IFAC Proc. Vol., 45 (27), pp. 182-187
dc.relation.referencesPedro, M., A Range-based navigation system for autonomous underwater vehicles (2014), (Master thesis) Universidade de Lisboa, Instituto Superior Técnico
dc.relation.referencesRamírez-Macías, J.A., Vásquez, R.E., Sørensen, A.J., Sævik, S., Motion feasibility framework for remotely operated vehicles based on dynamic positioning capability (2021) J. Offshore Mech. Arctic Eng., 143 (1). , 011201
dc.relation.referencesRidao, P., Ribas, D., Sanz, P.J., Special section on navigation, guidance and control of underwater vehicles (2016) Ann. Rev. Control, 42, pp. 143-144
dc.relation.referencesRúa, S., Crasta, N., Vásquez, R.E., Betancur, M.J., Pascoal, A.M., Cooperative range-based navigation using a beacon with circular motion installed on board the support platform (2019) IFAC-PapersOnLine, 52 (21), pp. 390-395. , 12th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2019
dc.relation.referencesRúa, S., Vásquez, R.E., Development of a low-level control system for the ROV Visor3 (2016) Int. J. Navig. Obs., pp. 1-12. , 8029124
dc.relation.referencesSaúde, J., Aguiar, A.P., Single beacon acoustic navigation for an AUV in the presence of unknown ocean currents (2009) IFAC Proc. Vol., 42 (18), pp. 298-303. , 8th IFAC Conference on Manoeuvring and Control of Marine Craft
dc.relation.referencesSchaft, A.J., On realization of nonlinear systems described by higher-order differential equations (1986) Math. Syst. Theory, 19 (1), pp. 239-275
dc.relation.referencesScherbatyuk, A.P., The AUV positioning using ranges from on e transponder LBL (1995) OCEANS ’95. MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings, 3, pp. 1620-1623
dc.relation.referencesSong, T.L., Observability of target tracking with range-only measurements (1999) IEEE J. Ocean. Eng., 24 (3), pp. 383-387
dc.relation.referencesTan, Y.T., Gao, R., Chitre, M., Cooperative path planning for range-only localization using a single moving beacon (2014) IEEE J. Ocean. Eng., 39 (2), pp. 371-385
dc.relation.referencesVaganay, J., Baccou, P., Jouvencel, B., Homing by acoustic ranging to a single beacon (2000) OCEANS 2000 MTS/IEEE Conference and Exhibition, pp. 1457-1462
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem